981 resultados para spray mixture
Resumo:
The objective of this work was to generate drift curves from pesticide applications on coffee plants and to compare them with two European drift-prediction models. The used methodology is based on the ISO 22866 standard. The experimental design was a randomized complete block with ten replicates in a 2x20 split-plot arrangement. The evaluated factors were: two types of nozzles (hollow cone with and without air induction) and 20 parallel distances to the crop line outside of the target area, spaced at 2.5 m. Blotting papers were used as a target and placed in each of the evaluated distances. The spray solution was composed of water+rhodamine B fluorescent tracer at a concentration of 100 mg L-1, for detection by fluorimetry. A spray volume of 400 L ha-1 was applied using a hydropneumatic sprayer. The air-induction nozzle reduces the drift up to 20 m from the treated area. The application with the hollow cone nozzle results in 6.68% maximum drift in the nearest collector of the treated area. The German and Dutch models overestimate the drift at distances closest to the crop, although the Dutch model more closely approximates the drift curves generated by both spray nozzles.
Resumo:
The objective of this work was to introduce the emerging non-contacting spray coating process and compare it to the existing coating techniques. Particular emphasis was given to the details of the spraying process of paper coating colour and the base paper requirements set by the new coating method. Spraying technology itself is nothing new, but the atomisation process of paper coating colour is quite unknown to the paper industry. The differences between the rheology of painting and coating colours make it very difficult to utilise the existing information from spray painting research. Based on the trials, some basic conclusion can be made:The results of this study suggest that the Brookfield viscosity of spray coating colour should be as low as possible, presently a 50 mPas level is regarded as an optimum. For the paper quality and coater runnability, the solids level should be as high as possible. However, the graininess of coated paper surface and the nozzle wear limits the maximum solids level to 60 % at the moment. Most likelydue to the low solids and low viscosity of the coating colour the low shear Brookfield viscosity correlates very well with the paper and spray fan qualities. High shear viscosity is also important, but yet less significant than the low shear viscosity. Droplet size should be minimized and besides keeping the brrokfield viscosity low that can be helped by using a surfactant or dispersing agent in the coating colour formula. Increasing the spraying pressure in the nozzle can also reduce the droplet size. The small droplet size also improves the coating coverage, since there is hardly any levelling taking place after the impact with the base paper. Because of the lack of shear forces after the application, the pigment particles do not orientate along the paper surface. Therefore the study indicates that based on the present know-how, no quality improvements can be obtained by the use of platy type of pigments. The other disadvantage of them is the rapid deterioration of the nozzle lifetime. Further research in both coating colour rheology and nozzle design may change this in the future, but so far only round shape pigments, like typically calcium carbonate is, can be used with spray coating. The low water retention characteristics of spray coating, enhanced by the low solids and low viscosity, challenge the base paper absorption properties.Filler level has to be low not to increase the number of small pores, which have a great influence on the absorption properties of the base paper. Hydrophobic sizing reduces this absorption and prevents binder migration efficiently. High surface roughness and especially poor formation of the base paper deteriorate thespray coated paper properties. However, pre-calendering of the base paper does not contribute anything to the finished paper quality, at least at the coating colour solids level below 60 %. When targeting a standard offset LWC grade, spraycoating produces similar quality to film coating, but yet blade coating being on a slightly better level. However, because of the savings in both investment and production costs, spray coating may have an excellent future ahead. The porousnature of the spray coated surface offers an optimum substrate for the coldset printing industry to utilise the potential of high quality papers in their business.
Resumo:
The analysis of the shape of excitation-emission matrices (EEMs) is a relevant tool for exploring the origin, transport and fate of dissolved organic matter (DOM) in aquatic ecosystems. Within this context, the decomposition of EEMs is acquiring a notable relevance. A simple mathematical algorithm that automatically deconvolves individual EEMs is described, creating new possibilities for the comparison of DOM fluorescence properties and EEMs that are very different from each other. A mixture model approach is adopted to decompose complex surfaces into sub-peaks. The laplacian operator and the Nelder-Mead optimisation algorithm are implemented to individuate and automatically locate potential peaks in the EEM landscape. The EEMs of a simple artificial mixture of fluorophores and DOM samples collected in a Mediterranean river are used to describe the model application and to illustrate a strategy that optimises the search for the optimal output.
Resumo:
La spectroscopie infrarouge (FTIR) est une technique de choix dans l'analyse des peintures en spray (traces ou bonbonnes de référence), grâce à son fort pouvoir discriminant, sa sensibilité, et ses nombreuses possibilités d'échantillonnage. La comparaison des spectres obtenus est aujourd'hui principalement faite visuellement, mais cette procédure présente des limitations telles que la subjectivité de la prise de décision car celle-ci dépend de l'expérience et de la formation suivie par l'expert. De ce fait, de faibles différences d'intensités relatives entre deux pics peuvent être perçues différemment par des experts, même au sein d'un même laboratoire. Lorsqu'il s'agit de justifier ces différences, certains les expliqueront par la méthode analytique utilisée, alors que d'autres estimeront plutôt qu'il s'agit d'une variabilité intrinsèque à la peinture et/ou à son vécu (par exemple homogénéité, sprayage, ou dégradation). Ce travail propose d'étudier statistiquement les différentes sources de variabilité observables dans les spectres infrarouges, de les identifier, de les comprendre et tenter de les minimiser. Le deuxième objectif principal est de proposer une procédure de comparaison des spectres qui soit davantage transparente et permette d'obtenir des réponses reproductibles indépendamment des experts interrogés. La première partie du travail traite de l'optimisation de la mesure infrarouge et des principaux paramètres analytiques. Les conditions nécessaires afin d'obtenir des spectres reproductibles et minimisant la variation au sein d'un même échantillon (intra-variabilité) sont présentées. Par la suite une procédure de correction des spectres est proposée au moyen de prétraitements et de sélections de variables, afin de minimiser les erreurs systématiques et aléatoires restantes, et de maximiser l'information chimique pertinente. La seconde partie présente une étude de marché effectuée sur 74 bonbonnes de peintures en spray représentatives du marché suisse. Les capacités de discrimination de la méthode FTIR au niveau de la marque et du modèle sont évaluées au moyen d'une procédure visuelle, et comparées à diverses procédures statistiques. Les limites inférieures de discrimination sont testées sur des peintures de marques et modèles identiques mais provenant de différents lots de production. Les résultats ont montré que la composition en pigments était particulièrement discriminante, à cause des étapes de corrections et d'ajustement de la couleur subies lors de la production. Les particularités associées aux peintures en spray présentes sous forme de traces (graffitis, gouttelettes) ont également été testées. Trois éléments sont mis en évidence et leur influence sur le spectre infrarouge résultant testée : 1) le temps minimum de secouage nécessaire afin d'obtenir une homogénéité suffisante de la peinture et, en conséquence, de la surface peinte, 2) la dégradation initiée par le rayonnement ultra- violet en extérieur, et 3) la contamination provenant du support lors du prélèvement. Finalement une étude de population a été réalisée sur 35 graffitis de la région lausannoise et les résultats comparés à l'étude de marché des bonbonnes en spray. La dernière partie de ce travail s'est concentrée sur l'étape de prise de décision lors de la comparaison de spectres deux-à-deux, en essayant premièrement de comprendre la pratique actuelle au sein des laboratoires au moyen d'un questionnaire, puis de proposer une méthode statistique de comparaison permettant d'améliorer l'objectivité et la transparence lors de la prise de décision. Une méthode de comparaison basée sur la corrélation entre les spectres est proposée, et ensuite combinée à une évaluation Bayesienne de l'élément de preuve au niveau de la source et au niveau de l'activité. Finalement des exemples pratiques sont présentés et la méthodologie est discutée afin de définir le rôle précis de l'expert et des statistiques dans la procédure globale d'analyse des peintures. -- Infrared spectroscopy (FTIR) is a technique of choice for analyzing spray paint speciments (i.e. traces) and reference samples (i.e. cans seized from suspects) due to its high discriminating power, sensitivity and sampling possibilities. The comparison of the spectra is currently carried out visually, but this procedure has limitations such as the subjectivity in the decision due to its dependency on the experience and training of the expert. This implies that small differences in the relative intensity of two peaks can be perceived differently by experts, even between analysts working in the same laboratory. When it comes to justifying these differences, some will explain them by the analytical technique, while others will estimate that the observed differences are mostly due to an intrinsic variability from the paint sample and/or its acquired characteristics (for example homogeneity, spraying, or degradation). This work proposes to statistically study the different sources of variability observed in infrared spectra, to identify them, understand them and try to minimize them. The second goal is to propose a procedure for spectra comparison that is more transparent, and allows obtaining reproducible answers being independent from the expert. The first part of the manuscript focuses on the optimization of infrared measurement and on the main analytical parameters. The necessary conditions to obtain reproducible spectra with a minimized variation within a sample (intra-variability) are presented. Following that a procedure of spectral correction is then proposed using pretreatments and variable selection methods, in order to minimize systematic and random errors, and increase simultaneously relevant chemical information. The second part presents a market study of 74 spray paints representative of the Swiss market. The discrimination capabilities of FTIR at the brand and model level are evaluated by means of visual and statistical procedures. The inferior limits of discrimination are tested on paints coming from the same brand and model, but from different production batches. The results showed that the pigment composition was particularly discriminatory, because of the corrections and adjustments made to the paint color during its manufacturing process. The features associated with spray paint traces (graffitis, droplets) were also tested. Three elements were identified and their influence on the resulting infrared spectra were tested: 1) the minimum shaking time necessary to obtain a sufficient homogeneity of the paint and subsequently of the painted surface, 2) the degradation initiated by ultraviolet radiation in an exterior environment, and 3) the contamination from the support when paint is recovered. Finally a population study was performed on 35 graffitis coming from the city of Lausanne and surroundings areas, and the results were compared to the previous market study of spray cans. The last part concentrated on the decision process during the pairwise comparison of spectra. First, an understanding of the actual practice among laboratories was initiated by submitting a questionnaire. Then, a proposition for a statistical method of comparison was advanced to improve the objectivity and transparency during the decision process. A method of comparison based on the correlation between spectra is proposed, followed by the integration into a Bayesian framework at both source and activity levels. Finally, some case examples are presented and the recommended methodology is discussed in order to define the role of the expert as well as the contribution of the tested statistical approach within a global analytical sequence for paint examinations.
Resumo:
This paper proposes a very simple method for increasing the algorithm speed for separating sources from PNL mixtures or invertingWiener systems. The method is based on a pertinent initialization of the inverse system, whose computational cost is very low. The nonlinear part is roughly approximated by pushing the observations to be Gaussian; this method provides a surprisingly good approximation even when the basic assumption is not fully satisfied. The linear part is initialized so that outputs are decorrelated. Experiments shows the impressive speed improvement.
Resumo:
This article describes a photocatalytic nanostructured anatase coating deposited by cold gas spray (CGS)supported on titanium sub-oxide (TiO22x) coatings obtained by atmospheric plasma spray (APS) onto stainless steel cylinders. The photocatalytic coating was homogeneous and preserved the composition and nanostructure of the starting powder. The inner titanium sub-oxide coating favored the deposition of anatase particles in the solid state. Agglomerated nano-TiO2 particles fragmented when impacting onto the hard surface of the APS TiO22x bond coat. The rough surface provided by APS provided an ideal scenario for entrapping the nanostructured particles, which may be adhered onto the bond coat due to chemical bonding; a possible bonding mechanism is described. Photocatalytic experiments showed that CGS nano-TiO2 coating was active for photodegrading phenol and formic acid under aqueous conditions. The results were similar to the performance obtained by competitor technologies and materials such as dip-coating P25 photocatalysts. Disparity in the final performance of the photoactive materials may have been caused by differences in grain size and the crystalline composition of titanium dioxide.
Resumo:
This paper presents a preliminary study on the degradation of spray paint samples, illustrated by Optical, FTIR and Raman measurements. As opposed to automotive paints which are specifically designed for improved outdoor exposure and protected using hindered amine light absorbers (HALS) and ultra-violet absorbers (UVA), the spray paints on their side are much simpler in composition and very likely to suffer more from joint effects of solar radiation, temperature and humidity. Six different spray paint were exposed to outdoor UV-radiation for a total period of three months and both FTIR and Raman measurements were taken systematically during this time. These results were later compared to an artificial degradation using a climate chamber. For infrared spectroscopy, degradation curves were plotted using the photo-oxidation index (POI), and could be successfully approximated with a logarithmic fitting (R2 > 0.8). The degradation can appear after the first few days of exposure and be important until 2 months, where it stabilizes and follow a more linear trend afterwards. One advantage is that the degradation products appeared almost exclusively at the far end (∼3000 cm−1) of mid-infrared spectra, and that the fingerprint region of the spectra remained stable over the studied period of time. Raman results suggest that the pigments on the other side, are much more stable and have not shown any sign of degradation over the time of this study. Considering the forensic implications of this environmental degradation, care should be taken when comparing samples if weathering is an option (e.g. an exposed graffiti compared to the paint from a fresh spray paint can). Degradation issues should be kept in mind as they may induce significant differences between paint samples of common origin.
Resumo:
AbstractObjective:The present article is aimed at reporting the author’s experience with transcatheter arterial embolization using a lipiodol-ethanol mixture in three cases of unresectable symptomatic giant hepatic hemangiomas.Materials and Methods:The cases of three patients with giant unresectable symptomatic hepatic hemangiomas embolized in the period 2009–2010 were retrospectively reviewed. In all the cases, transarterial embolization was performed with an ethanol-lipiodol mixture.Results:Symptoms regression and quality of life improvement were observed in all the cases. No complications were observed and all the patients were discharged within 12 hours after the procedure.Conclusion:Transcatheter arterial embolization using ethanol mixed with lipiodol was a safe and effective treatment for symptomatic giant hepatic hemangiomas in this small series of patients.
Resumo:
The spray-drying technique has been widely used for drying heat-sensitive foods, pharmaceuticals, and other substances, because it leads to rapid solvent evaporation from droplets. This method involves the transformation of a feed from a fluid state into a dried particulate, by spraying the feed into a hot medium. Despite being most often considered a dehydration process, spray drying can also be used as an encapsulation method. Therefore, this work proposes the use of a simple and low-cost ultrasonic spray dryer system to produce spherical microparticles. This equipment was successfully applied to the preparation of dextrin microspheres on a laboratory scale and for academic purposes.
Resumo:
In this work, a new adsorbent was prepared by microencapsulation of sulfoxine into chitosan microspheres by the spray drying technique. The new adsorbent was characterized by Raman spectroscopy, scanning electron microscopy and microanalysis of energy dispersive X-rays. The Cu(II) adsorption was studied as a function of pH, time and concentration. The optimum pH was found to be 6.0. The kinetic and equilibrium data showed that the adsorption process followed the pseudo second-order kinetic model and the Langmuir isotherm model over the entire concentration range. An increase of 8.0% in the maximum adsorption capacity of the adsorbent (53.8 mg g-1) was observed as compared to chitosan glutaraldehyde cross-linked microspheres.
Resumo:
Biosensors based on laccase immobilized on microparticles of chitosan crosslinked with tripolyphosphate (biosensor I) and glyoxal (biosensor II) obtained by spray drying for the determinations of rutin in pharmaceutical formulations were developed. Under optimized operational conditions (pH 4.0, frequency of 30 Hz, pulse amplitude of 40 mV and scan increment of 2.0 mV) two analytical curves were obtained for both biosensors showing a detection limit of 6.2x10-8 mol L-1 for biosensor (I) and 2.0x10-8 mol L-1 for biosensor (II). The recovery of rutin from pharmaceutical sample ranged from 90.7 to 105.0% and the lifetime of these biosensors were 4 months (at least 400 determinations).
Resumo:
In this work we describe a new efficient strategy for the preparation of 1,2,4-trimethoxybenzene (3) in 56% overall yield. The compound 3 was used in a preliminary study of insect attraction by a mixture of semiochemicals called TIV, composed of indol (1), vanillin (2) and 1,2,4-trimethoxybenzene (3), in eight Mc Phail style traps installed at a domestic orchard of citric-culture, containing 120 trees not infected by plagues in Bom Jesus Farm, located next to a patch of the Atlantic Forest, at Silva Jardim, Rio de Janeiro, Brazil.
Resumo:
The aim of this study was to encapsulate curcumin into chitosan, using sodium tripolyphosphate (TPP) as an ionic crosslinker by the spray drying method. The influence of TPP on the properties of the final product, such as solubility, morphology, loading efficiency, thermal behavior, swelling degree and release profiles, was evaluated. The microparticles had a spherical morphology (0.5-20 µm) with no apparent porosity or cracks. Results indicated the formation of a polymeric network, which ensures effective protection for curcumin. Controlled-release studies were carried out at pH 1.2 and 6.8, to observe the influence of pH on curcumin release while the mechanism was analyzed using the Korsmeyer-Peppas equation.