965 resultados para spotsize converter
Voltage Sensing Using an Asynchronous Charge-to-Digital Converter for Energy-Autonomous Environments
Resumo:
In future systems with relatively unreliable and unpredictable energy sources such as harvesters, the system power supply may become non-deterministic. For energy effective operations, Vdd is an important parameter in any meaningful system control mechanism. Reliable and accurate on-chip voltage sensors are therefore indispensible for the power and computation management of such systems. Existing voltage sensing methods are not suitable because they usually require a stable and known reference (voltage, current, time, frequency, etc.), which is difficult to obtain in this environment. This paper describes an autonomous reference-free voltage sensor designed using an asynchronous counter powered by the charge on a capacitor and a small controller. Unlike existing methods, the voltage information is directly generated as a digital code. The sensor, fabricated in the 180 nm technology node, was tested successfully through performing measurements over the voltage range from 1.8 V down to 0.8 V.
Resumo:
The two-stroke engine, by its nature is very dependent on the unsteady gas dynamics within an exhaust system. This is demonstrated by the tuning effects on two-stroke engines, which have been well documented. In consideration of current emissions legislation, a two-stroke engine can be fitted with a catalytic converter for the outboard, utility or automotive markets. The catalytic substrate represents a major obstruction to the flow of exhaust gas, which hinders the progression of the main exhausted pulse, and in turn effects the scavenging of the cylinder and ultimately the performance of the engine.
Resumo:
A linear hydrodynamic model is used to assess the sensitivity of the performance of a wave energy converter (WEC) array to control parameters. It is found that WEC arrays have a much smaller tolerance to imprecision of the control parameters than isolated WECs and that the increase in power capture of WEC arrays is only achieved with larger amplitudes of motion of the individual WECs. The WEC array radiation pattern is found to provide useful insight into the array hydrodynamics. The linear hydrodynamic model is used, together with the wave climate at the European Marine Energy Centre (EMEC), to assess the maximum annual average power capture of a WEC array. It is found that the maximum annual average power capture is significantly reduced compared to the maximum power capture for regular waves and that the optimum array configuration is also significantly modified. It is concluded that the optimum configuration of a WEC array will be as much influenced by factors such as mooring layout, device access and power smoothing as it is by the theoretical optimum hydrodynamic configuration. © 2009 Elsevier Ltd.
Resumo:
The European Union has set a target of 20% for the share of renewable energy sources in gross final energy consumption in 2020. These renewable energy targets are priority objectives for the Europe 2020 strategy for inclusive growth. In line with the European Union renewable energy policies, the Northern Ireland Executive has a target to deliver 40% renewable electricity by 2020. Currently, Northern Ireland imports 98% of the energy it uses in the form of fossil fuels. Locally produced energy and electricity is needed to ensure sustainable development. The aim of this research is to develop part of a strategy for the mechanical power take-off system for a flap type wave energy converter. Aquamarine Power Ltd’s Oyster flap was the device used for simulation and testing purposes. In this paper the state-of-the-art of wave energy converters is reviewed and a 40th scale test model was developed and built.
Resumo:
This paper describes a series of experiments undertaken to investigate the slamming of an Oscillating Wave Surge Converter in extreme sea states. These two-dimensional experiments were undertaken in the Wave Flume at Ecole Centrale Marseille. Images from a high speed camera are used to identify the physics of the slamming process. A single pressure sensor is used to record the characteristic of the pressure. Finally numerical results are compared to the output from the experiments.
Resumo:
The power output from a wave energy converter is typically predicted using experimental and/or numerical modelling techniques. In order to yield meaningful results the relevant characteristics of the device, together with those of the wave climate must be modelled with sufficient accuracy.
The wave climate is commonly described using a scatter table of sea states defined according to parameters related to wave height and period. These sea states are traditionally modelled with the spectral distribution of energy defined according to some empirical formulation. Since the response of most wave energy converters vary at different frequencies of excitation, their performance in a particular sea state may be expected to depend on the choice of spectral shape employed rather than simply the spectral parameters. Estimates of energy production may therefore be affected if the spectral distribution of wave energy at the deployment site is not well modelled. Furthermore, validation of the model may be affected by differences between the observed full scale spectral energy distribution and the spectrum used to model it.
This paper investigates the sensitivity of the performance of a bottom hinged flap type wave energy converter to the spectral energy distribution of the incident waves. This is investigated experimentally using a 1:20 scale model of Aquamarine Power’s Oyster wave energy converter, a bottom hinged flap type device situated at the European Marine Energy Centre (EMEC) in approximately 13m water depth. The performance of the model is tested in sea states defined according to the same wave height and period parameters but adhering to different spectral energy distributions.
The results of these tests show that power capture is reduced with increasing spectral bandwidth. This result is explored with consideration of the spectral response of the device in irregular wave conditions. The implications of this result are discussed in the context of validation of the model against particular prototype data sets and estimation of annual energy production.
Resumo:
This short paper, structured in 3 distinct sections will touch on some of the key features of the Oyster wave energy device and its recent development. The first section discusses the nature of the resource in the nearshore environment,
some common misunderstandings in relation to it and its suitability for exploitation of commercial wave energy. In the second section a brief description of some of the fundamentals governing flap type devices is given. This serves to emphasise core differences between the Oyster device and other devices. Despite the simplicity of the design and the operation of the device itself, it is shown that Oyster occupies a theoretical space which is substantially outside most established theories and axioms in wave energy. The third section will give a short summary of the recent developments in the design of the Oyster 2 project and touch on how its enhanced features deal with some of the key commercial and technical challenges present in the sector.
Resumo:
An electronically tunable reflection polarizer which exploits the dielectric anisotropy of nematic liquid crystals (LC) has been designed, fabricated and measured in a frequency band centered at 130 GHz. The phase agile polarizing mirror converts an incident slant 45° signal upon reflection to right hand circular (RHCP), orthogonal linear (-45 °) or left hand circular (LHCP) polarization depending on the value of the voltage biasing the LC mixture. In the experimental set-up this is achieved by applying a low frequency bias voltage of 0 V, 40 V and 89 V respectively, across the cavity containing the LC material.
Resumo:
Wave impacts on an oscillating wave surge converter are examined using experimental and numerical methods. The mechanics of the impact event are identified experimentally with the use of images recorded with a high-speed camera. It is shown that it is the device that impacts the wave rather than a breaking wave impacting the device. Numerical simulations using two different approaches are used to further understand the issue. Good agreement is shown between numerical simulations and experimental measurements at 25th scale.
Resumo:
This paper describes the problems in experimentally obtaining hydrodynamic loads on an oscillating wave surge converter during slamming events, with the aim of furthering understanding of full scale hydrodynamic loads that flap type devices must be designed to withstand. Including how hydro-elastic effects and structural response are linked and why they are essential to the measurement of impulsive hydrodynamic loads. A combined experimental and numerical structural response study carried out on a 40th scale Oyster model drew conclusions on the structural vibration observed in the strain gauge load cell measurement. A further structural response study on a piezo electric load measurement device gave an insight into the advantages it could bring to reducing hydro-elastic effects.
Resumo:
The term fatigue loads on the Oyster Oscillating Wave Surge Converter (OWSC) is used to describe hydrostatic loads due to water surface elevation with quasi-static changes of state. Therefore a procedure to implement hydrostatic pressure distributions into finite element analysis of the structure is desired. Currently available experimental methods enable one to measure time variant water surface elevation at discrete locations either on or around the body of the scale model during tank tests. This paper discusses the development of a finite element analysis procedure to implement time variant, spatially distributed hydrostatic pressure derived from discretely measured water surface elevation. The developed method can process differently resolved (temporal and spatial) input data and approximate the elevation over the flap faces with user defined properties. The structural loads, namely the forces and moments on the body can then be investigated by post processing the numerical results. This method offers the possibility to process surface elevation or hydrostatic pressure data from computational fluid dynamics simulations and can thus be seen as a first step to a fluid-structure interaction model.