992 resultados para spine motion segment stiffness


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Performing reliable localisation and navigation within highly unstructured underwater coral reef environments is a difficult task at the best of times. Typical research and commercial underwater vehicles use expensive acoustic positioning and sonar systems which require significant external infrastructure to operate effectively. This paper is focused on the development of a robust vision-based motion estimation technique using low-cost sensors for performing real-time autonomous and untethered environmental monitoring tasks in the Great Barrier Reef without the use of acoustic positioning. The technique is experimentally shown to provide accurate odometry and terrain profile information suitable for input into the vehicle controller to perform a range of environmental monitoring tasks.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Performing reliable localisation and navigation within highly unstructured underwater coral reef environments is a difficult task at the best of times. Typical research and commercial underwater vehicles use expensive acoustic positioning and sonar systems which require significant external infrastructure to operate effectively. This paper is focused on the development of a robust vision-based motion estimation technique using low-cost sensors for performing real-time autonomous and untethered environmental monitoring tasks in the Great Barrier Reef without the use of acoustic positioning. The technique is experimentally shown to provide accurate odometry and terrain profile information suitable for input into the vehicle controller to perform a range of environmental monitoring tasks.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Osteoporotic spinal fractures are a major concern in ageing Western societies. This study develops a multi-scale finite element (FE) model of the osteoporotic lumbar vertebral body to study the mechanics of vertebral compression fracture at both the apparent (whole vertebral body) and micro-structural (internal trabecular bone core)levels. Model predictions were verified against experimental data, and found to provide a reasonably good representation of the mechanics of the osteoporotic vertebral body. This novel modelling methodology will allow detailed investigation of how trabecular bone loss in osteoporosis affects vertebral stiffness and strength in the lumbar spine.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This paper investigates virtual reality representations of the 1599 Boar’s Head Theatre and the Rose Theatre, two renaissance places and spaces. These models become a “world elsewhere” in that they represent virtual recreations of these venues in as much detail as possible. The models are based on accurate archeological and theatre historical records and are easy to navigate particularly for current use. This paper demonstrates the ways in which these models can be instructive for reading theatre today. More importantly we introduce human figures onto the stage via motion capture which allows us to explore the potential between space, actor and environment. This facilitates a new way of thinking about early modern playwrights’ “attitudes to locality and localities large and small”. These venues are thus activated to intersect productively with early modern studies so that the paper can test the historical and contemporary limits of such research.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The dynamics of droplets exhaled from the respiratory system during coughing or talking is addressed. A mathematical model is presented accounting for the motion of a droplet in conjunction with its evaporation. Droplet evaporation and motion are accounted for under two scenarios: 1) A well mixed droplet and 2) A droplet with inner composition variation. A multiple shells model was implemented to account for internal mass and heat transfer and for concentration and temperature gradients inside the droplet. The trajectories of the droplets are computed for a range of conditions and the spatial distribution and residence times of such droplets are evaluated.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The human knee acts as a sophisticated shock absorber during landing movements. The ability of the knee to perform this function in the real world is remarkable given that the context of the landing movement may vary widely between performances. For this reason, humans must be capable of rapidly adjusting the mechanical properties of the knee under impact load in order to satisfy many competing demands. However, the processes involved in regulating these properties in response to changing constraints remain poorly understood. In particular, the effects of muscle fatigue on knee function during step landing are yet to be fully explored. Fatigue of the knee muscles is significant for 2 reasons. First, it is thought to have detrimental effects on the ability of the knee to act as a shock absorber and is considered a risk factor for knee injury. Second, fatigue of knee muscles provides a unique opportunity to examine the mechanisms by which healthy individuals alter knee function. A review of the literature revealed that the effect of fatigue on knee function during landing has been assessed by comparing pre and postfatigue measurements, with fatigue induced by a voluntary exercise protocol. The information is limited by inconsistent results with key measures, such as knee stiffness, showing varying results following fatigue, including increased stiffness, decreased stiffness or failure to detect any change in some experiments. Further consideration of the literature questions the validity of the models used to induce and measure fatigue, as well as the pre-post study design, which may explain the lack of consensus in the results. These limitations cast doubt on the usefulness of the available information and identify a need to investigate alternative approaches. Based on the results of this review, the aims of this thesis were to: • evaluate the methodological procedures used in validation of a fatigue model • investigate the adaptation and regulation of post-impact knee mechanics during repeated step landings • use this new information to test the effects of fatigue on knee function during a step-landing task. To address the aims of the thesis, 3 related experiments were conducted that collected kinetic, kinematic and electromyographic data from 3 separate samples of healthy male participants. The methodologies involved optoelectronic motion capture (VICON), isokinetic dynamometry (System3 Pro, BIODEX) and wireless surface electromyography (Zerowire, Aurion, Italy). Fatigue indicators and knee function measures used in each experiment were derived from the data. Study 1 compared the validity and reliability of repetitive stepping and isokinetic contractions with respect to fatigue of the quadriceps and hamstrings. Fifteen participants performed 50 repetitions of each exercise twice in randomised order, over 4 sessions. Sessions were separated by a minimum of 1 week’s rest, to ensure full recovery. Validity and reliability depended on a complex interaction between the exercise protocol, the fatigue indicator, the individual and the muscle of interest. Nevertheless, differences between exercise protocols indicated that stepping was less effective in eliciting valid and reliable changes in peak power and spectral compression, compared with isokinetic exercise. A key finding was that fatigue progressed in a biphasic pattern during both exercises. The point separating the 2 phases, known as the transition point, demonstrated superior between-test reliability during the isokinetic protocol, compared with stepping. However, a correction factor should be used to accurately apply this technique to the study of fatigue during landing. Study 2 examined alterations in knee function during repeated landings, with a different sample (N =12) performing 60 consecutive step landing trials. Each landing trial was separated by 1-minute rest periods. The results provided new information in relation to the pre-post study design in the context of detecting adjustments in knee function during landing. First, participants significantly increased or decreased pre-impact muscle activity or post-impact mechanics despite environmental and task constraints remaining unchanged. This is the 1st study to demonstrate this effect in healthy individuals without external feedback on performance. Second, single-subject analysis was more effective in detecting alterations in knee function compared to group-level analysis. Finally, repeated landing trials did not reduce inter-trial variability of knee function in some participants, contrary to assumptions underpinning previous studies. The results of studies 1 and 2 were used to modify the design of Study 3 relative to previous research. These alterations included a modified isokinetic fatigue protocol, multiple pre-fatigue measurements and singlesubject analysis to detect fatigue-related changes in knee function. The study design incorporated new analytical approaches to investigate fatiguerelated alterations in knee function during landing. Participants (N = 16) were measured during multiple pre-fatigue baseline trial blocks prior to the fatigue model. A final block of landing trials was recorded once the participant met the operational fatigue definition that was identified in Study 1. The analysis revealed that the effects of fatigue in this context are heavily dependent on the compensatory response of the individual. A continuum of responses was observed within the sample for each knee function measure. Overall, preimpact preparation and post-impact mechanics of the knee were altered with highly individualised patterns. Moreover, participants used a range of active or passive pre-impact strategies to adapt post-impact mechanics in response to quadriceps fatigue. The unique patterns identified in the data represented an optimisation of knee function based on priorities of the individual. The findings of these studies explain the lack of consensus within the literature regarding the effects of fatigue on knee function during landing. First, functional fatigue protocols lack validity in inducing fatigue-related changes in mechanical output and spectral compression of surface electromyography (sEMG) signals, compared with isokinetic exercise. Second, fatigue-related changes in knee function during landing are confounded by inter-individual variation, which limits the sensitivity of group-level analysis. By addressing these limitations, the 3rd study demonstrated the efficacies of new experimental and analytical approaches to observe fatigue-related alterations in knee function during landing. Consequently, this thesis provides new perspectives into the effects of fatigue in knee function during landing. In conclusion: • The effects of fatigue on knee function during landing depend on the response of the individual, with considerable variation present between study participants, despite similar physical characteristics. • In healthy males, adaptation of pre-impact muscle activity and postimpact knee mechanics is unique to the individual and reflects their own optimisation of demands such as energy expenditure, joint stability, sensory information and loading of knee structures. • The results of these studies should guide future exploration of adaptations in knee function to fatigue. However, research in this area should continue with reduced emphasis on the directional response of the population and a greater focus on individual adaptations of knee function.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This study examined whether the conspicuity of road workers at night can be enhanced by distributing retroreflective strips across the body to present a pattern of biological motion (biomotion). Twenty visually normal drivers (mean age = 40.3 years) participated in an experiment conducted at two open-road work sites (one suburban and one freeway) at night-time. At each site, four road workers walked in place wearing a standard road worker night vest either (a) alone, (b) with additional retroreflective strips on thighs, (c) with additional retroreflective strips on ankles and knees, or (d) with additional retroreflective strips on eight moveable joints (full biomotion). Participants, seated in stationary vehicles at three different distances (80 m, 160 m, 240 m), rated the relative conspicuity of the four road workers. Road worker conspicuity was maximized by the full biomotion configuration at all distances and at both sites. The addition of ankle and knee markings also provided significant benefits relative to the standard vest alone. The effects of clothing configuration were more evident at the freeway site and at shorter distances. Overall, the full biomotion configuration was ranked to be most conspicuous and the vest least conspicuous. These data provide the first evidence that biomotion effectively enhances conspicuity of road workers at open-road work sites.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Lumia: art/light/motion is an exciting new media exhibition presented by State Library of Queensland in partnership with Queensland-based Kuuki collective artists Priscilla Bracks and Gavin Sade. The exhibition explored contemporary life and encourages thought about the future through an extraordinary collection of hand-crafted and interactive electronic creatures and installations. The beautifully crafted new media artworks in Lumia: art/light/motion combine the bespoke with art and technology to create strange but intriguing objects. Lumia invited audiences to play, learn and then ponder the way we live and the environmental and social implications of our choices.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This paper demonstrates the application of a robust form of pose estimation and scene reconstruction using data from camera images. We demonstrate results that suggest the ability of the algorithm to rival methods of RANSAC based pose estimation polished by bundle adjustment in terms of solution robustness, speed and accuracy, even when given poor initialisations. Our simulated results show the behaviour of the algorithm in a number of novel simulated scenarios reflective of real world cases that show the ability of the algorithm to handle large observation noise and difficult reconstruction scenes. These results have a number of implications for the vision and robotics community, and show that the application of visual motion estimation on robotic platforms in an online fashion is approaching real-world feasibility.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The main focus of this paper is the motion planning problem for a deeply submerged rigid body. The equations of motion are formulated and presented by use of the framework of differential geometry and these equations incorporate external dissipative and restoring forces. We consider a kinematic reduction of the affine connection control system for the rigid body submerged in an ideal fluid, and present an extension of this reduction to the forced affine connection control system for the rigid body submerged in a viscous fluid. The motion planning strategy is based on kinematic motions; the integral curves of rank one kinematic reductions. This method is of particular interest to autonomous underwater vehicles which can not directly control all six degrees of freedom (such as torpedo shaped AUVs) or in case of actuator failure (i.e., under-actuated scenario). A practical example is included to illustrate our technique.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This paper presents Multi-Step A* (MSA*), a search algorithm based on A* for multi-objective 4D vehicle motion planning (three spatial and one time dimension). The research is principally motivated by the need for offline and online motion planning for autonomous Unmanned Aerial Vehicles (UAVs). For UAVs operating in large, dynamic and uncertain 4D environments, the motion plan consists of a sequence of connected linear tracks (or trajectory segments). The track angle and velocity are important parameters that are often restricted by assumptions and grid geometry in conventional motion planners. Many existing planners also fail to incorporate multiple decision criteria and constraints such as wind, fuel, dynamic obstacles and the rules of the air. It is shown that MSA* finds a cost optimal solution using variable length, angle and velocity trajectory segments. These segments are approximated with a grid based cell sequence that provides an inherent tolerance to uncertainty. Computational efficiency is achieved by using variable successor operators to create a multi-resolution, memory efficient lattice sampling structure. Simulation studies on the UAV flight planning problem show that MSA* meets the time constraints of online replanning and finds paths of equivalent cost but in a quarter of the time (on average) of vector neighbourhood based A*.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This article investigates virtual reality representations of performance in London’s late sixteenth-century Rose Theatre, a venue that, by means of current technology, can once again challenge perceptions of space, performance, and memory. The VR model of The Rose represents a virtual recreation of this venue in as much detail as possible and attempts to recover graphic demonstrations of the trace memories of the performance modes of the day. The VR model is based on accurate archeological and theatre historical records and is easy to navigate. The introduction of human figures onto The Rose’s stage via motion capture allows us to explore the relationships between space, actor and environment. The combination of venue and actors facilitates a new way of thinking about how the work of early modern playwrights can be stored and recalled. This virtual theatre is thus activated to intersect productively with contemporary studies in performance; as such, our paper provides a perspective on and embodiment of the relation between technology, memory and experience. It is, at its simplest, a useful archiving project for theatrical history, but it is directly relevant to contemporary performance practice as well. Further, it reflects upon how technology and ‘re-enactments’ of sorts mediate the way in which knowledge and experience are transferred, and even what may be considered ‘knowledge.’ Our work provides opportunities to begin addressing what such intermedial confrontations might produce for ‘remembering, experiencing, thinking and imagining.’ We contend that these confrontations will enhance live theatre performance rather than impeding or disrupting contemporary performance practice. Our ‘paper’ is in the form of a video which covers the intellectual contribution while also permitting a demonstration of the interventions we are discussing.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This paper presents a general methodology for learning articulated motions that, despite having non-linear correlations, are cyclical and have a defined pattern of behavior Using conventional algorithms to extract features from images, a Bayesian classifier is applied to cluster and classify features of the moving object. Clusters are then associated in different frames and structure learning algorithms for Bayesian networks are used to recover the structure of the motion. This framework is applied to the human gait analysis and tracking but applications include any coordinated movement such as multi-robots behavior analysis.