984 resultados para spatial variables
Resumo:
This paper proposes a spatial-temporal downscaling approach to construction of the intensity-duration-frequency (IDF) relations at a local site in the context of climate change and variability. More specifically, the proposed approach is based on a combination of a spatial downscaling method to link large-scale climate variables given by General Circulation Model (GCM) simulations with daily extreme precipitations at a site and a temporal downscaling procedure to describe the relationships between daily and sub-daily extreme precipitations based on the scaling General Extreme Value (GEV) distribution. The feasibility and accuracy of the suggested method were assessed using rainfall data available at eight stations in Quebec (Canada) for the 1961-2000 period and climate simulations under four different climate change scenarios provided by the Canadian (CGCM3) and UK (HadCM3) GCM models. Results of this application have indicated that it is feasible to link sub-daily extreme rainfalls at a local site with large-scale GCM-based daily climate predictors for the construction of the IDF relations for present (1961-1990) and future (2020s, 2050s, and 2080s) periods at a given site under different climate change scenarios. In addition, it was found that annual maximum rainfalls downscaled from the HadCM3 displayed a smaller change in the future, while those values estimated from the CGCM3 indicated a large increasing trend for future periods. This result has demonstrated the presence of high uncertainty in climate simulations provided by different GCMs. In summary, the proposed spatial-temporal downscaling method provided an essential tool for the estimation of extreme rainfalls that are required for various climate-related impact assessment studies for a given region.
Resumo:
Distributed energy and water balance models require time-series surfaces of the meteorological variables involved in hydrological processes. Most of the hydrological GIS-based models apply simple interpolation techniques to extrapolate the point scale values registered at weather stations at a watershed scale. In mountainous areas, where the monitoring network ineffectively covers the complex terrain heterogeneity, simple geostatistical methods for spatial interpolation are not always representative enough, and algorithms that explicitly or implicitly account for the features creating strong local gradients in the meteorological variables must be applied. Originally developed as a meteorological pre-processing tool for a complete hydrological model (WiMMed), MeteoMap has become an independent software. The individual interpolation algorithms used to approximate the spatial distribution of each meteorological variable were carefully selected taking into account both, the specific variable being mapped, and the common lack of input data from Mediterranean mountainous areas. They include corrections with height for both rainfall and temperature (Herrero et al., 2007), and topographic corrections for solar radiation (Aguilar et al., 2010). MeteoMap is a GIS-based freeware upon registration. Input data include weather station records and topographic data and the output consists of tables and maps of the meteorological variables at hourly, daily, predefined rainfall event duration or annual scales. It offers its own pre and post-processing tools, including video outlook, map printing and the possibility of exporting the maps to images or ASCII ArcGIS formats. This study presents the friendly user interface of the software and shows some case studies with applications to hydrological modeling.
Resumo:
The objective of this study was to estimate the spatial distribution of work accident risk in the informal work market in the urban zone of an industrialized city in southeast Brazil and to examine concomitant effects of age, gender, and type of occupation after controlling for spatial risk variation. The basic methodology adopted was that of a population-based case-control study with particular interest focused on the spatial location of work. Cases were all casual workers in the city suffering work accidents during a one-year period; controls were selected from the source population of casual laborers by systematic random sampling of urban homes. The spatial distribution of work accidents was estimated via a semiparametric generalized additive model with a nonparametric bidimensional spline of the geographical coordinates of cases and controls as the nonlinear spatial component, and including age, gender, and occupation as linear predictive variables in the parametric component. We analyzed 1,918 cases and 2,245 controls between 1/11/2003 and 31/10/2004 in Piracicaba, Brazil. Areas of significantly high and low accident risk were identified in relation to mean risk in the study region (p < 0.01). Work accident risk for informal workers varied significantly in the study area. Significant age, gender, and occupational group effects on accident risk were identified after correcting for this spatial variation. A good understanding of high-risk groups and high-risk regions underpins the formulation of hypotheses concerning accident causality and the development of effective public accident prevention policies.
Resumo:
A caracterização da variabilidade espacial dos atributos do solo é indispensável para subsidiar práticas agrícolas de maneira sustentável. A utilização da geoestatística para caracterizar a variabilidade espacial desses atributos, como a resistência mecânica do solo à penetração (RP) e a umidade gravimétrica do solo (UG), é, hoje, prática usual na agricultura de precisão. O resultado da análise geoestatística é dependente da densidade amostral e de outros fatores, como o método de georreferencimento utilizado. Desta forma, o presente trabalho teve como objetivo comparar dois métodos de georreferenciamento para a caracterização da variabilidade espacial da RP e da UG, bem como a correlação espacial dessas variáveis. Foi implantada uma malha amostral de 60 pontos, espaçados em 20 m. Para as medições da RP, utilizou-se de penetrógrafo eletrônico e, para a determinação da UG, utilizou-se de trado holandês (profundidade de 0,0-0,1 m). As amostras foram georreferenciadas, utilizando-se do método de Posicionamento por Ponto Simples (PPS), com de (retirar) receptor GPS de navegação, e Posicionamento Relativo Semicinemático, com receptor GPS geodésico L1. Os resultados indicaram que o georreferenciamento realizado pelo PPS não interferiu na caracterização da variabilidade espacial da RP e da UG, assim como na estrutura espacial da relação dos atributos.
Resumo:
A técnica de agricultura de precisão e a relação solo-paisagem permitem delimitar áreas para o manejo localizado, o que permite a aplicação localizada de insumos agrícolas e, consequentemente, pode contribuir para a preservação de recursos naturais. Portanto, o objetivo deste trabalho foi caracterizar a variabilidade espacial das propriedades químicas e do teor de argila, no contexto da relação solo-paisagem, em um Latossolo sob cultivo de citros. Amostras de solo foram coletadas na profundidade de 0,0-0,2 m, em uma área de 83,5 ha cultivada com citros, na forma de malha, com intervalos regulares de 50 m, com 129 pontos na forma de relevo côncava e 206 pontos na forma plana, totalizando 335 pontos. Os valores obtidos para as variáveis que expressam as propriedades químicas e para o teor de argila do solo foram submetidos à análise estatística descritiva e geoestatística com a modelagem de semivariogramas para a confecção de mapas de krigagem. Os valores de alcance e mapas de krigagem indicaram maiores variabilidades na forma de relevo côncava (segmento topo), quando comparada com a forma plana (segmentos meia encosta e encosta inferior). A identificação de diferentes formas de relevo mostrou-se eficiente no entendimento da variabilidade espacial das propriedades químicas e do teor de argila do solo sob cultivo de citros.
Resumo:
O objetivo deste trabalho foi analizar a distribuição espacial da compactação do solo e a influência da umidade do solo na resistência à penetração. Esta última variável foi descrita pelo índice de cone. O solo estudado foi Nitossolo e os dados de índice de cone foram obtidos usando um penetrômetro. A resistência do solo foi avaliada a 5 profundidades diferentes, 0-10 cm, 10-20 cm, 20-30 cm, 30-40 cm e mais de 40 cm, porém o conteúdo de umidade do solo foi medido a 0-20 cm e 20-40 cm. As condições hídricas do solo variaram nas diferentes amostragems. Os coeficientes de variação para o índice de cone foram 16,5% a 45,8% e os do conteúdo de umidade do solo variaram entre 8,96% e 21,38%. Os resultados sugeriram elevada correlação entre a resistência do solo, estimada pelo índice de cone e a profundidade do solo. Sem embargo, a relação esperada com a umidade do solo não foi apreciada. Observou-se dependência espacial em 31 de 35 séries de dados de índice de cone e umidade do solo. Esta dependência foi ajustada por modelos exponenciais com efeito pepita variável de 0 a 90% o valor do patamar. em séries de dados o comportamento foi aleatório. Portanto, a técnica das distâncias inversas foi utilizada para cartografar a distribuição das variáveis que não tiveram estrutura espacial. Na krigagem constatou-se uma suavização dos mapas comparados com esses das distâncias inversas. A krigagem indicadora foi utilizada para cartografar a variabilidade espacial do índice de cone e recomendar melhor manejo do solo.
Resumo:
Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)
Resumo:
Background: Leptospirosis is an important zoonotic disease associated with poor areas of urban settings of developing countries and early diagnosis and prompt treatment may prevent disease. Although rodents are reportedly considered the main reservoirs of leptospirosis, dogs may develop the disease, may become asymptomatic carriers and may be used as sentinels for disease epidemiology. The use of Geographical Information Systems (GIS) combined with spatial analysis techniques allows the mapping of the disease and the identification and assessment of health risk factors. Besides the use of GIS and spatial analysis, the technique of data mining, decision tree, can provide a great potential to find a pattern in the behavior of the variables that determine the occurrence of leptospirosis. The objective of the present study was to apply Geographical Information Systems and data prospection (decision tree) to evaluate the risk factors for canine leptospirosis in an area of Curitiba, PR.Materials, Methods & Results: The present study was performed on the Vila Pantanal, a urban poor community in the city of Curitiba. A total of 287 dog blood samples were randomly obtained house-by-house in a two-day sampling on January 2010. In addition, a questionnaire was applied to owners at the time of sampling. Geographical coordinates related to each household of tested dog were obtained using a Global Positioning System (GPS) for mapping the spatial distribution of reagent and non-reagent dogs to leptospirosis. For the decision tree, risk factors included results of microagglutination test (MAT) from the serum of dogs, previous disease on the household, contact with rats or other dogs, dog breed, outdoors access, feeding, trash around house or backyard, open sewer proximity and flooding. A total of 189 samples (about 2/3 of overall samples) were randomly selected for the training file and consequent decision rules. The remained 98 samples were used for the testing file. The seroprevalence showed a pattern of spatial distribution that involved all the Pantanal area, without agglomeration of reagent animals. In relation to data mining, from 189 samples used in decision tree, a total of 165 (87.3%) animal samples were correctly classified, generating a Kappa index of 0.413. A total of 154 out of 159 (96.8%) samples were considered non-reagent and were correctly classified and only 5/159 (3.2%) were wrongly identified. on the other hand, only 11 (36.7%) reagent samples were correctly classified, with 19 (63.3%) samples failing diagnosis.Discussion: The spatial distribution that involved all the Pantanal area showed that all the animals in the area are at risk of contamination by Leptospira spp. Although most samples had been classified correctly by the decision tree, a degree of difficulty of separability related to seropositive animals was observed, with only 36.7% of the samples classified correctly. This can occur due to the fact of seronegative animals number is superior to the number of seropositive ones, taking the differences in the pattern of variable behavior. The data mining helped to evaluate the most important risk factors for leptospirosis in an urban poor community of Curitiba. The variables selected by decision tree reflected the important factors about the existence of the disease (default of sewer, presence of rats and rubbish and dogs with free access to street). The analyses showed the multifactorial character of the epidemiology of canine leptospirosis.
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Recursos pesqueiros são importantes fontes de renda e alimento para as populações rurais e urbanas na Amazônia. O presente trabalho avalia a pesca e as variáveis ambientais que determinam a produção de pescarias que desembarcam em Manaus, e avalia também a abundância relativa de recursos pesqueiros em diferentes subsistemas na Amazônia Central. A informação coletada no porto de desembarque de pescado de Manaus foi utilizada para testar um novo índice de captura obtido a partir de um modelo de covariância que apresentou as seguintes variáveis significativas: número de pescadores/dia (dias de pesca vezes número de pescadores por viagem); distância do pesqueiro até Manaus; quantidade de gelo que usou durante a viagem; e nível de rio. Não houve nenhuma diferença significativa entre valores médios de captura entre os subsistemas do Purus, Madeira e de Juruá. Estes resultados sugerem que os tributários da margem direita são similares e mais produtivos em termos comerciais. Concluiu-se que a produção corrente varia de acordo com a magnitude de esforço pesqueiro, por variações ambientais, assim como por aspectos operacionais da pesca, particularmente o consumo de gelo.
Resumo:
A emissão de CO2 do solo apresenta alta variabilidade espacial, devido à grande dependência espacial observada nas propriedades do solo que a influenciam. Neste estudo, objetivou-se: caracterizar e relacionar a variabilidade espacial da respiração do solo e propriedades relacionadas; avaliar a acurácia dos resultados fornecidos pelo método da krigagem ordinária e simulação sequencial gaussiana; e avaliar a incerteza na predição da variabilidade espacial da emissão de CO2 do solo e demais propriedades utilizando a simulação sequencial gaussiana. O estudo foi conduzido em uma malha amostral irregular com 141 pontos, instalada sobre a cultura de cana-de-açúcar. Nesses pontos foram avaliados a emissão de CO2 do solo, a temperatura do solo, a porosidade livre de água, o teor de matéria orgânica e a densidade do solo. Todas as variáveis apresentaram estrutura de dependência espacial. A emissão de CO2 do solo mostrou correlações positivas com a matéria orgânica (r = 0,25, p < 0,05) e a porosidade livre de água (r = 0,27, p <0,01) e negativa com a densidade do solo (r = -0,41, p < 0,01). No entanto, quando os valores estimados espacialmente (N=8833) são considerados, a porosidade livre de água passa a ser a principal variável responsável pelas características espaciais da respiração do solo, apresentando correlação de 0,26 (p < 0,01). As simulações individuais propiciaram, para todas as variáveis analisadas, melhor reprodução das funções de distribuição acumuladas e dos variogramas, em comparação à krigagem e estimativa E-type. As maiores incertezas na predição da emissão de CO2 estiveram associadas às regiões da área estudada com maiores valores observados e estimados, produzindo estimativas, ao longo do período estudado, de 0,18 a 1,85 t CO2 ha-1, dependendo dos diferentes cenários simulados. O conhecimento das incertezas gerado por meio dos diferentes cenários de estimativa pode ser incluído em inventários de gases do efeito estufa, resultando em estimativas mais conservadoras do potencial de emissão desses gases.
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
The objective of this work was to model and diagnose the spatial variability of soil load support capacity (SLSC) in sugar cane crop fields, as well as to evaluate the management impact on São Paulo State soil structure. The investigated variables were: pressure preconsolidation (sigma(p)), apparent cohesion () and internal friction angle (). The conclusions from the results were that the models and spatial dependence maps constitute important tools in the prediction and location of the mechanical internal strength of soils cultivated with sugar cane. They will help future soil management decisions so that soil structure sustainability will not be compromised.