968 resultados para spacetime splitting
Resumo:
We show that there exists a duality between the local coordinates and the solutions of the Klein-Gerdon equation in curved spacetime in the same sense as in the Minkowski spacetime. However, the duality in curved spacetime does not have the same generality as in flat spacetime and it holds only if the system satisfies certain constraints. We derive these constraints and the basic equations of duality and discuss the implications in the quantum theory. (C) 2000 Elsevier B.V. B.V. All rights reserved.
Resumo:
Wisdom has recently unveiled a new relativistic effect, called spacetime swimming, where quasirigid free bodies in curved spacetimes can speed up, slow down or deviate their falls by performing local cyclic shape deformations. We show here that for fast enough cycles this effect dominates over a nonrelativistic related one, named here space swinging, where the fall is altered through nonlocal cyclic deformations in Newtonian gravitational fields. We expect, therefore, to clarify the distinction between both effects leaving no room to controversy. Moreover, the leading contribution to the swimming effect predicted by Wisdom is enriched with a higher order term and the whole result is generalized to be applicable in cases where the tripod is in large redshift regions.
Resumo:
The cosmological constant is shown to have an algebraic meaning: it is essentially an eigenvalue of a Casimir invariant of the Lorentz group acting on the spaces tangent to every spacetime. This is found in the context of de Sitter spacetimes, for which the Einstein equation is a relation between operators. Nevertheless, the result brings, to the foreground the skeleton algebraic structure underlying the geometry of general physical spacetimes. which differ from one another by the fleshening of that structure by different tetrad fields.
Resumo:
The infinite cosmological constant limit of the de Sitter solutions to Einstein's equation is studied. The corresponding spacetime is a singular, four-dimensional cone-space, transitive under proper conformal transformations, which constitutes a new example of maximally-symmetric spacetime. Grounded on its geometric and thermodynamic properties, some speculations are made in connection with the primordial universe. (c) 2005 Elsevier B.V. All rights reserved.
Resumo:
Some properties of the Clifford algebras Cl-3,Cl-0, Cl-1,Cl-3, Cl-4,Cl-1 similar or equal to C circle times Cl-1,Cl-3 and Cl-2,Cl-4 are presented, and three isomorphisms between the Dirac-Clifford algebra C circle times Cl-1,Cl-3 and Cl-4,Cl-1 are exhibited, in order to construct conformal maps and twistors, using the paravector model of spacetime. The isomorphism between the twistor space inner product isometry group SU( 2,2) and the group $pin(+)(2,4) is also investigated, in the light of a suitable isomorphism between C circle times Cl-1,Cl-3 and Cl-4,Cl-1. After reviewing the conformal spacetime structure, conformal maps are described in Minkowski spacetime as the twisted adjoint representation of $ pin(+)(2,4), acting on paravectors. Twistors are then presented via the paravector model of Clifford algebras and related to conformal maps in the Clifford algebra over the Lorentzian R-4,(1) spacetime.We construct twistors in Minkowski spacetime as algebraic spinors associated with the Dirac-Clifford algebra C circle times Cl-1,Cl-3 using one lower spacetime dimension than standard Clifford algebra formulations, since for this purpose, the Clifford algebra over R-4,R-1 is also used to describe conformal maps, instead of R-2,(4). Our formalism sheds some new light on the use of the paravector model and generalizations.
Resumo:
In the framework of the spacetime with torsion, we obtain the flavor evolution equation of the mass neutrino oscillation in vacuum. A comparison with the result of general relativity case shows that the flavor evolutionary equations in Riemann spacetime and Weitzenbock spacetimes are equivalent in the spherical symmetric Schwarzschild spacetime, but turn out to be different in the case of the axial symmetry.
Resumo:
In the context of the teleparallel equivalent of general relativity, we obtain the tetrad and the torsion fields of the stationary axisymmetric Kerr spacetime. It is shown that, in the slow rotation and weak-field approximations, the axial-vector torsion plays the role of the gravitomagnetic component of the gravitational field, and is thus responsible for the Lense-Thirring effect.
Resumo:
Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)
Resumo:
We discuss the problem of the breakdown of conformal and gauge symmetries at finite temperature in curved-spacetime background, when the changes in the background are gradual, in order to have a well-defined quantum field theory at finite temperature. We obtain the expressions for Seeley's coefficients and the heat-kernel expansion in this regime. As applications, we consider the self-interacting lambdaphi4 and chiral Schwinger models in curved backgrounds at finite temperature.
Resumo:
The theory of macroscopic quantum tunneling is applied to a current-biased dc SQUID which constitutes a system of two interacting quantum degrees of freedom coupled to the environment. The decay probability is obtained in the exponential approximation for the overdamped case. Close to the critical driving force of the system, the decay of the metastable state is determined by a unique instanton solution describing the symmetric decay of the phases in each of the two Josephson juctions. Upon reducing the external driving force a new regime is reached where the instanton splits. The doubling of the decay channels reduces the decreasing of the decay rate in the quantum regime. A current-temperature phase diagram is constructed based on the Landau theory of phase transitions. Depending on the external parameters the system develops either a first- or a second-order transition to the split-instanton regime. © 1994 The American Physical Society.
Resumo:
We use the Ogg-McCombe Hamiltonian together with the Dresselhaus and Rashba spin-splitting terms to find the g factor of conduction electrons in GaAs-(Ga,Al)As semiconductor quantum wells (QWS) (either symmetric or asymmetric) under a magnetic field applied along the growth direction. The combined effects of non-parabolicity, anisotropy and spin-splitting terms are taken into account. Theoretical results are given as functions of the QW width and compared with available experimental data and previous theoretical works. © 2007 Elsevier B.V. All rights reserved.
Resumo:
We analyze the scalar radiation emitted by a source in uniform circular motion in Minkowski spacetime interacting with a massive Klein-Gordon field. We assume the source rotating around a central object due to a Newtonian force. By considering the canonical quantization of this field, we use perturbation theory to compute the radiation emitted at the tree level. Regarding the initial state of the field as being the Minkowski vacuum, we compute the emission amplitude for the rotating source, assuming it as being minimally coupled to the massive Klein-Gordon field. We then compute the power emitted by the swirling source as a function of its angular velocity, as measured by asymptotic static observers.
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
We examine, from both the experimental and theoretical point of view, the behavior of the maximum splitting ΔE, of the 7F1 manifold of the Eu3+ ion as a function of the so-called crystal field strength parameter, Nv, in a series of oxides. In connection with the original theory that describes the relation between ΔE and Nv, a more consistent procedure to describe this relation is presented for the cases of small total angular momentum J. Good agreement is found between theory and experiment. © 1995.
Resumo:
Environmental data are spatial, temporal, and often come with many zeros. In this paper, we included space–time random effects in zero-inflated Poisson (ZIP) and ‘hurdle’ models to investigate haulout patterns of harbor seals on glacial ice. The data consisted of counts, for 18 dates on a lattice grid of samples, of harbor seals hauled out on glacial ice in Disenchantment Bay, near Yakutat, Alaska. A hurdle model is similar to a ZIP model except it does not mix zeros from the binary and count processes. Both models can be used for zero-inflated data, and we compared space–time ZIP and hurdle models in a Bayesian hierarchical model. Space–time ZIP and hurdle models were constructed by using spatial conditional autoregressive (CAR) models and temporal first-order autoregressive (AR(1)) models as random effects in ZIP and hurdle regression models. We created maps of smoothed predictions for harbor seal counts based on ice density, other covariates, and spatio-temporal random effects. For both models predictions around the edges appeared to be positively biased. The linex loss function is an asymmetric loss function that penalizes overprediction more than underprediction, and we used it to correct for prediction bias to get the best map for space–time ZIP and hurdle models.