974 resultados para solvent effect
Resumo:
The effects of sample solvent composition and the injection volume, on the chromatographic peak profiles of two carbamate derivatives, methyl 2-benzimidazolecarbamate (MBC) and 3-butyl-2,4-dioxo[1,2-a]-s-triazinobenzimidazole (STB), were studied using reverse phase high performance liquid chromatograph. The study examined the effects of acetonitrile percentage in the sample solvent from 5 to 50%, effects of methanol percentage from 5 to 50%, effects of pH increase from 4.42 to 9.10, and effect of increasing buffer concentration from ° to 0.12M. The effects were studied at constant and increasing injection mass and at four injection volumes of 10, 50, 100 and 200 uL. The study demonstrated that the amount and the type of the organic solvents, the pH, and the buffer strength of the sample solution can have a pronounced effect on the peak heights, peak widths, and retention times of compounds analysed. MBC, which is capable of intramolecular hydrogen bonding and has no tendency to ionize, showed a predictable increase .in band broadening and a decrease in retention times at higher eluting strengths of the sample solvent. STB, which has a tendency to ionize or to strongly interact with the sample solvent, was influenced in various ways by the changes in ths sample solvent composition. The sample solvent effects became more pronounced as the injection volume increased and as the percentage of organic solvent in the sample solution became greater. The peak height increases for STB at increasing buffer concentrations became much more pronounced at higher analyte concentrations. It was shown that the widely accepted procedure of dissolving samples in the mobile phase does not yield the most efficient chromatograms. For that reason samples should be dissolved in the solutions with higher aqueous content than that of the mobile phase whenever possible. The results strongly recommend that all the samples and standards, regardless whether the standards are external or internal, be analysed at a constant sample composition and a constant injection volume.
Resumo:
Part I - Fluorinated Compounds A method has been developed for the extraction, concentration, and determination of two unique fluorinated compounds from the sediments of Lake Ontario. These compounds originated from a common industrial landfill, and have been carried to Lake Ontario by the Niagara River. Sediment samples from the Mississauga basin of Lake Ontario have been evaluated for these compounds and a depositional trend was established. The sediments were extracted by accelerated solvent extraction (ASE) and then underwent clean-up, fractionation, solvent exchange, and were concentrated by reduction under nitrogen gas. The concentrated extracts were analyzed by gas chromatography - electron capture negative ionization - mass spectrometry. The depositional profile determined here is reflective of the operation of the landfill and shows that these compounds are still found at concentrations well above background levels. These increased levels have been attributed to physical disturbances of previously deposited contaminated sediments, and probable continued leaching from the dumpsite. Part II - Polycyclic Aromatic Hydrocarbons Gas chromatography/mass spectrometry is the most common method for the determination of polycyclic aromatic hydrocarbons (PAHs) from various matrices. Mass discrimination of high-boiling compounds in gas chromatographic methods is well known. The use of high-boiling injection solvents shows substantial increase in the response of late-eluting peaks. These solvents have an increased efficiently in the transfer of solutes from the injector to the analytical column. The effect of I-butanol, I-pentanol, cyclopentanol, I-hexanol, toluene and n-octane, as injection solvents, was studied. Higher-boiling solvents yield increased response for all PAHs. I -Hexanol is the best solvent, in terms of P AH response, but in this solvent P AHs were more susceptible to chromatographic problems such as peak splitting and tailing. Toluene was found to be the most forgiving solvent in terms of peak symmetry and response. It offered the smallest discrepancies in response, and symmetry over a wide range of initial column temperatures.
Resumo:
Isora fibre-reinforced natural rubber (NR) composites were cured at 80, 100, 120 and 150°C using a low temperature curing accelerator system. Composites were also prepared using a conventional accelerator system and cured at 150°C. The swelling behavior of these composites at varying fibre loadings was studied in toluene and hexane. Results show that the uptake of solvent and volume fraction of rubber due to swelling was lower for the low temperature cured vulcanizates which is an indication of the better fibre/rubber adhesion. The uptake of aromatic solvent was higher than that of aliphatic solvent, for all the composites. As the fibre content increased, the solvent uptake decreased, due to the superior solvent resistance of the fibre and good fibre-rubber interactions. The bonding agent improved the swelling resistance of the composites due to the strong interfacial adhesion. Due to the improved adhesion between the fibre and rubber, the ratio of the change in volume fraction of rubber due to swelling to the volume fraction of rubber in the dry sample (V,) was found to decrease in the presence of bonding agent. At a fixed fibre loading, the alkali treated fibre composite showed a lower percentage swelling than untreated one for both systems showing superior rubber-fibre interactions.
Resumo:
Kinetics of mercuric chloride catalysed solvolysis of benzyl chloride have been studied in water. 10% aq. ethanol, 10,20 and 30% aq. acetone and 20% aq. DMSO. The results confirm the operation of a mass law effect.
Resumo:
In the present work the toxic activity of extracts of Eupatorium microphyllum L.F. was evaluated on 4th instar larvae of the mosquito Aedes aegypti (Linneaus), under laboratory conditions. Aqueous extracts were utilized in concentrations of 500 mg L-1, 1,500 mg L-1 and 2,500 mg L-1 and acetone in concentrations of 10 mg L-1, 20 mg L-1, 30 mg L-1, 40 mg L-1and 50 mg L-1. The bioassays were carried out for triplicate each one with 20 larvae, exposed for 24 hours to 150 mL of solution. In all the bioassays were employed control groups. In the evaluation of the acetone extracts, a negative control was employed to avoid that the mortality of the larvae to occur on account of the solvent. The Aqueous extracts showed low moderate action in the mortality of larvae, less than 20%. On the contrary, the action of the acetone extracts was observed to 10 and 20 mg L-1with 15% of mortality, while to 30 and 40 mg L-1 were registered 22 to 38% of mortality. However, to 50 mg L-1 the mortality was of 95.4% with highly significant statistical results. The concentrations of the acetone extracts showed to be the most efficient for the control of the mosquitoes selected. Both types of extracts showed toxic effect in larvae of A. aegypti, nevertheless, greater effect in the acetone extracts was observed relating to the aqueous extracts of E. microphyllum, which constitutes a viable alternative in the search of new larvicides from composed natural.
Resumo:
The solvent-induced transition between self-assembled structures formed by the peptide AAKLVFF is studied via electron microscopy, light scattering, and spectroscopic techniques. The peptide is based on a core fragment of the amyloid beta-peptide, KLVFF, extended by two alanine residues. AAKLVFF exhibits distinct structures of twisted fibrils in water or nanotubes in methanol. For intermediate water/methanol compositions, these structures are disrupted and replaced by wide filamentous tapes that appear to be lateral aggregates of thin protofilaments. The orientation of the beta-strands in the twisted tapes or nanotubes can be deduced from X-ray diffraction on aligned stalks, as well as FT-IR experiments in transmission compared to attenuated total reflection. Strands are aligned perpendicular to the axis of the twisted fibrils or the nanotubes. The results are interpreted in light of recent results on the effect of competitive hydrogen bonding upon self-assembly in soft materials in water/methanol mixtures.
Resumo:
The separation by solvent extraction of Am-241(III) from Eu-152(III), in 1 M NaNO3 weakly acidic (pH 4) aqueous solutions, into dilute (ca. 10(-2) M) solutions of triazinylbipyridine derivatives (diethylhemi-BTP or di(benzyloxyphenyl) hemi-BTP) and chlorinated cobalt dicarbollide (COSAN) in 1-octanol or nitrobenzene has been studied. The N-tridentate heterocyclic ligands, which are selective for Am(III) over Eu(III), secured efficient separation of the two metal ions, while COSAN, strongly hydrophobic and fully dissociated in polar diluents, enhanced the extraction of the metal ions by ion-pair formation. Molecular interactions between the two co-extractants, observed at higher concentrations, led to the precipitation of their 1: 1 molecular adduct. In spite of that, efficient separations of Am and Eu ions were attained, with high separation factors, SFAm/Eu of 40 and even 60, provided the concentration of hemi-BTP was significantly greater than that of COSAN. Excess COSAN concentrations caused an antagonistic effect, decreasing both the distribution ratio of the metal ions and their separation factor.
Resumo:
The synthesis, lanthanide complexation and solvent extraction of An(III) and Ln(III) radiotracers from nitric acid solutions by a pre-organized, phenanthroline-derived bis-triazine ligand CyMe4-BTPhen are described. It was found that the ligand separated Am(III) and Cm(III) from the lanthanides with remarkably high efficiency, high selectivity, and faster extraction kinetics compared to its 2,2’-bipyridine counterpart CyMe4-BTBP. The origins of the ligands extraction properties were established by a combination of solvent extraction experiments, X-ray crystallography, kinetics and surface tension measurements and lanthanide NMR spectroscopy.
Resumo:
The demand for plant material of Rhodiola rosea L. (Crassulaceae) for medicinal use has increased recently, amid concerns about its quality and sustainability. We have analysed the content of phenylpropanoids (total rosavins) and salidroside in liquid extracts from 3-year old cultivated plants of European origin, and mapped the influence of plant part (rhizome versus root), genotype, drying, cutting, and extraction solvent to chemical composition. Rhizomes contained 1.5-4 times more salidroside (0.3-0.4% dry wt) and total rosavins (1.2-3.0%) than roots. The qualitative decisive phenylpropanoid content in the extracts was most influenced by plant part, solvent, and genotype, while drying temperature and cutting conditions were of less importance. We have shown that R. rosea from different boreal European provenances can be grown under temperate conditions and identified factors to obtain consistent high quality extracts provided that authentic germplasm is used and distinguished between rhizome, roots and their mixtures.
Resumo:
The many-body effect in the kinetic responses of ER fluids is studied by a molecular-dynamic simulation method. The mutual polarization effects of the particles are considered by self-consistently calculating the dipole strength on each particle according to the external field and the dipole field due to all the other particles in the fluids. The many-body effect is found to increase with the enhancement of the particle concentration and the permittivity ratio between the solvent and the particles. The calculated response times are shorter than that predicted with the 'point-dipole' model and agree very well with experimental results. The many-body effect enhances the shear stresses of the fluids by several times. But they are not proportional to the many-body correction factor lambda as expected. This is due to the fact that larger interaction forces between the particles lead to coarsening of the fibers formed in the suspensions. The results show that the many-body and multipolar interaction between the particles must be treated comprehensively in the simulations in order to get more reliable results.
Resumo:
We address the effect of solvation on the lowest electronic excitation energy of camphor. The solvents considered represent a large variation in-solvent polarity. We consider three conceptually different ways of accounting for the solvent using either an implicit, a discrete or an explicit solvation model. The solvatochromic shifts in polar solvents are found to be in good agreement with the experimental data for all three solvent models. However, both the implicit and discrete solvation models are less successful in predicting solvatochromic shifts for solvents of low polarity. The results presented suggest the importance of using explicit solvent molecules in the case of nonpolar solvents. (C) 2009 Elsevier B.V. All rights reserved.
Resumo:
Pterins are members of a family of heterocyclic compounds present in a wide variety of biological systems and may exist in two forms, corresponding to an acid and a basic tautomer. In this work, the proton transfer reaction between these tautomeric forms was investigated in the gas phase and in aqueous solution. In gas phase, the intramolecular mechanism was carried out for die isolated pterin by quantum mechanical second-order Moller-Plesset Perturbation theory (MP2/aug-cc-pVDZ) calculations and it indicates that the acid form is more stable than the basic form by -1.4 kcal/mol with a barrier of 34.2 kcal/mol with respect to the basic form. In aqueous solution, the role of the water molecules in the proton transfer reaction was analyzed in two separated parts, the direct participation of one water molecule in the reaction path, called water-assisted mechanism, and the complementary participation of the aqueous solvation. The water-assisted mechanism was carried out for one pterin-water cluster by quantum mechanical calculations and it indicates that the acid form is still more stable by -3.3 kcal/mol with a drastic reduction of 70% of the barrier, The bulk solution effect on the intramolecular and water-assisted mechanisms was included by free energy perturbation implemented on Monte Carlo simulations. The bulk water effect is found to be substantial and decisive when the reaction path involves the water-assisted mechanism. In this case, the free energy barrier is only 6.7 kcal/mol and the calculated relative Gibbs free energy for the two tautomers is -11.2 kcal/mol. This value is used to calculate the pK(a) value of 8.2 +/- 0.6 that is in excellent agreement with the experimental result of 7.9.
Resumo:
The addition of lithium salts to ionic liquids causes an increase in viscosity and a decrease in ionic mobility that hinders their possible application as an alternative solvent in lithium ion batteries. Optically heterodyne-detected optical Kerr effect spectroscopy was used to study the change in dynamics, principally orientational relaxation, caused by the addition of lithium bis(trifluoromethylsulfonyl)imide to the ionic liquid 1-buty1-3-methylimidazolium bis(trifluoromethylsulfonyl)imide. Over the time scales studied (1 ps-16 ns) for the pure ionic liquid, two temperature-independent power laws were observed: the intermediate power law (1 ps to similar to 1 ns), followed by the von Schweidler power law. The von Schweidler power law is followed by the final complete exponential relaxation, which is highly sensitive to temperature. The lithium salt concentration, however, was found to affect both power laws, and a discontinuity could be found in the trend observed for the intermediate power law when the concentration (mole fraction) of lithium salt is close to chi(LiTf(2)N) = 0.2. A mode coupling theory (MCT) schematic model was also used to fit the data for both the pure ionic liquid and the different salt concentration mixtures. It was found that dynamics in both types of liquids are described very well by MCT.
Resumo:
The interaction of bovine serum albumin (BSA) with the ionic surfactants sodium dodecylsulfate (SDS, anionic), cetyltrimethylammonium chloride (CTAC, cationic) and N-hexadecyl-N,N-dimethyl-3-ammonio-1-propanesulfonate (HPS, zwitterionic) was studied by electron paramagnetic resonance (EPR) spectroscopy of spin label covalently bound to the single free thiol group of the protein. EPR spectra simulation allows to monitor the protein dynamics at the labeling site and to estimate the changes in standard Gibbs free energy, enthalpy and entropy for transferring the nitroxide side chain from the more motionally restricted to the less restricted component. Whereas SDS and CTAC showed similar increases in the dynamics of the protein backbone for all measured concentrations. HPS presented a smaller effect at concentrations above 1.5 mM. At 10 mM of surfactants and 0.15 mM BSA, the standard Gibbs free energy change was consistent with protein backbone conformations more expanded and exposed to the solvent as compared to the native protein, but with a less pronounced effect for HPS. In the presence of the surfactants, the enthalpy change, related to the energy required to dissociate the nitroxide side chain from the protein, was greater, suggesting a lower water activity. The nitroxide side chain also detected a higher viscosity environment in the vicinity of the paramagnetic probe induced by the addition of the surfactants. The results suggest that the surfactant-BSA interaction, at higher surfactant concentration, is affected by the affinities of the surfactant to its own micelles and micelle-like aggregates. Complementary DLS data suggests that the temperature induced changes monitored by the nitroxide probe reflects local changes in the vicinity of the single thiol group of Cys-34 BSA residue. (C) 2011 Elsevier B.V. All rights reserved.
Resumo:
Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)