1000 resultados para soil geochemistry
Resumo:
Mode of access: Internet.
Resumo:
The treatment and hydraulic mechanisms in a septic tank-soil absorption system ( SAS) are highly influenced by the clogging layer or biomat zone which develops on bottom and lower sidewall surfaces within the trench. Flow rates through the biomat and sub-biomat zones are governed largely by the biomat hydraulic properties (resistance and hydraulic conductivity) and the unsaturated hydraulic conductivity of the underlying soil. One- and 2-dimensional models were used to investigate the relative importance of sidewall and vertical flow rates and pathways in SAS. Results of 1-dimensional modelling show that several orders of magnitude variation in saturated hydraulic conductivity (Ks) reduce to a 1 order of magnitude variation in long-term flow rates. To increase the reliability of prediction of septic trench hydrology, HYDRUS-2D was used to model 2-dimensional flow. In the permeable soils, under high trench loading, effluent preferentially flowed in the upper region of the trench where no resistant biomat was present (the exfiltration zone). By comparison, flow was more evenly partitioned between the biomat zones and the exfiltration zones of the low permeability soil. An increase in effluent infiltration corresponded with a greater availability of exfiltration zone, rather than a lower resistance of biomat. Results of modelling simulations demonstrated the important role that a permeable A horizon may play in limiting surface surcharge of effluent under high trench hydraulic loading.
Resumo:
Freshwater wetland soils of the Everglades were studied in order to assess present environmental conditions and paleo-environmental changes using organic geochemistry techniques. Organic matter in dominant vegetation, peat and marl soils was characterized by geochemical means. Samples were selected along nutrient and hydrology gradients with the objective to determine the historical sources of organic matter as well as the extent of its preservation. Effective molecular proxies were developed to differentiate the relative input of organic matter from different biological sources to wetland soils. Thus historical vegetation shifts and hydroperiods were reconstructed using those proxies. The data show good correlations with historical water management practices starting at the turn of the century and during the mid 1900's. Overall, significant shortening of hydroperiods during this period was observed. The soil organic matter (SOM) preservation was assessed through elemental analysis and molecular characterizations of bulk 13C stable isotopes, solid state 13C NMR spectroscopy, UV-Vis spectroscopy, and tetramethyl ammonium hydroxide (TMAH) thermochemolysis-GC/MS. The relationship of the environmental conditions and degradation status of the soil organic matter (SOM) among the sites suggested that both high nutrient levels and long hydroperiod favor organic matter degradation in the soils. This is probably the result of an increase in the microbial activity in the soils which have higher nutrient levels, while longer hydroperiods may enhance physical/chemical degradation processes. The most significant transformations of biomass litter in this environment are controlled by very early physical/chemical processes and once the OM is incorporated into surface soils, the diagenetic change, even over extended periods of time is comparatively minimal, and SOM is relatively well preserved regardless of hydroperiod or nutrient levels. SOM accumulated in peat soils is more prone to continued degradation than the SOM in the marl soils. The latter is presumably stabilized early on through direct air exposure (oxidation) and thus, it is more refractory to further diagenetic transformations such as humification and aromatization reactions.
Resumo:
Invasive plant species are major threats to the biodiversity and ecosystem stability. The purpose of this study is to understand the impacts of invasive plants on soil nutrient cycling and ecological functions. Soil samples were collected from rhizosphere and non-rhizosphere of both native and exotic plants from three genera, Lantana, Ficus and Schinus, at Tree Tops Park in South Florida, USA. Experimental results showed that the cultivable bacterial population in the soil under Brazilian pepper (invasive Schinus) was approximately ten times greater than all other plants. Also, Brazilian pepper lived under conditions of significantly lower available phosphorus but higher phosphatase activities than other sampled sites. Moreover, the respiration rates and soil macronutrients in rhizosphere soils of exotic plants were significantly higher than those of the natives (Phosphorus, p=0.034; Total Nitrogen, p=0.0067; Total Carbon, p=0.0243). Overall, the soil biogeochemical status under invasive plants was different from those of the natives.
Resumo:
Date of Acceptance: 05/06/2015 This research was made possible through funding provided by the Leverhulme Trust, the Spanish Ministry of Science and Innovation (Project CGL2010–20672) and Xunta de Galicia (grants R2014/001 and GPC2014/009). N Silva-Sánchez is currently supported by a FPU pre-doctoral grant (AP2010–3264) funded by the Spanish Government. Kirsty Golding, Andy McMullen, and Ian Simpson are thanked for their assistance with fieldwork. Alison Sandison produced the maps. Pete Langdon and two anonymous referees are thanked for comments that helped to improve the paper.
Resumo:
Date of Acceptance: 05/06/2015 This research was made possible through funding provided by the Leverhulme Trust, the Spanish Ministry of Science and Innovation (Project CGL2010–20672) and Xunta de Galicia (grants R2014/001 and GPC2014/009). N Silva-Sánchez is currently supported by a FPU pre-doctoral grant (AP2010–3264) funded by the Spanish Government. Kirsty Golding, Andy McMullen, and Ian Simpson are thanked for their assistance with fieldwork. Alison Sandison produced the maps. Pete Langdon and two anonymous referees are thanked for comments that helped to improve the paper.
Resumo:
Date of Acceptance: 05/06/2015 This research was made possible through funding provided by the Leverhulme Trust, the Spanish Ministry of Science and Innovation (Project CGL2010–20672) and Xunta de Galicia (grants R2014/001 and GPC2014/009). N Silva-Sánchez is currently supported by a FPU pre-doctoral grant (AP2010–3264) funded by the Spanish Government. Kirsty Golding, Andy McMullen, and Ian Simpson are thanked for their assistance with fieldwork. Alison Sandison produced the maps. Pete Langdon and two anonymous referees are thanked for comments that helped to improve the paper.
Resumo:
A Pliocene (2.6-3.5 Ma) age is determined from glacial sediments studied in a 20m long, 4 m deep trench excavated in Heidemann Valley, Vestfold Hills, East Antarctica. The age determination is based on a combined study of amino acid racemization, diatoms, foraminifera, and magnetic polarity, and supports earlier estimates of the age of the sedimentary section; all are beyond 14C range. Four till units are recognized and documented, and 16 subunits are identified. All are ascribed to deposition during a Late Pliocene glaciation that was probably the last time the entire Vestfold Hills was covered by an enlarged East Antarctic Ice Sheet (EAIS). Evidence for other more recent glacial events of the 'Vestfold Glaciation' may have been due to lateral expansion of the Sorsdal Glacier and limited expansion of the icesheet margin during the Last Glacial Maximum rather than a major expansion of the EAIS. The deposit appears to correlate with a marine deposition event recorded in Ocean Drilling Program Site 1166 in Prydz Bay, possibly with the Bardin Bluffs Formation of the Prince Charles Mountains and with part of the time represented in the ANDRILL AND-1B core in the Ross Sea.
Resumo:
Beach and salt marsh vegetation of the Uummannaq District, northern West Greenland (c. 70°15' N - 72° N, 49° W - 54° W) was studied 1998 according to the Braun-Blanquet phytosociological approach. Habitat analyses included soil chemistry. Such vegetation locally occurs and is not developed over extensive areas. On gravely stony beaches a Mertensia maritima ssp. maritima community occurs, while a Honckenya peploides var. diffusa community is confined to sandy beaches. The association Honckenyo diffusae-Elymetum mollis Thannh. 1975 is confined to sandy shore walls and low dunes. All vegetation types are assigned to the alliance Honckenyo- Elymion arenariae Tx. 1966, which again is a unit of the order Honckenyo- Elymetalia arenariae Tx. 1966, which is sub ordered to the class Honckenyo-Elymetea arenariae Tx. 1966. On fine sediments along sheltered coasts salt marsh vegetation is locally developed mainly on fiord deltas and outwash plains of small rivers and streams. A distinct zonation pattern in vegetation can be observed from the lower to upper salt marsh: Puccinellietum phryganodis Hadac 1946 association, Caricetum subspathaceae Hadac 1946 association, Caricetum ursinae Hadac 1946 association (all assigned to the alliance Puccinellion phryganodis Hadac 1946) and Festuco-Caricetum glareosae Nordh. 1954 association (assigned to the alliance Armerion maritimae Br.-Bl. et de Leeuw 1936). Both alliances are units of the order Glauco- Puccinellietalia Beeftink et Westhoff in Beeftink 1965, which is assigned to the class Asteretea tripolii Westhoff et Beeftink in Beeftink 1962. TWINSPAN and CCA support the vegetation classification and the CCA with soil chemistry parameters shows that salinity (related to position above MHW) and Ncontent are strongly correlated with the floristical differentiation of the vegetation of the Honckenyo-Elymetea class. In the Asteretea tripolii class, position above MHW (negatively correlated with pH, conductivity and Clcontent) and fresh water supply are likely the main factors, which affect vegetation differentiation. A synoptic survey of vegetation types from Greenland based on published phytosociological tables is presented and distribution of the vegetation types is addressed, just as their position in a circumpolar context. Moreover a Cochlearia groenlandica-Melandrium triflorum community is described as a new vegetation type, occurring on shallow soil on cliffs influenced by salt spray.