993 resultados para software component
Resumo:
The diagonal band of Broca (DBB) is involved in cardiovascular control in rats, In the present Study, we report the effect of acute and reversible neurotransmission inhibition in the DBB by bilateral microinjection of the nonselective neurotransmission blocker CoCl(2) (1 mM, 100 nL) on the cardiac baroreflex response in unanesthetized rats. Local DBB neurotransmission inhibition did not affect baseline values of either blood pressure or heart rate, Suggesting no tonic DBB influence oil cardiovascular system activity. However, CoCl(2) microinjections enhanced both the reflex bradycardia associated with blood pressure increases caused by i.v. infusion of phenylephrine and tachycardiac response evoked by blood pressure decreases caused by i.v. infusion of sodium nitroprusside. An increase in baroreflex gain was also observed. Baroreflex returned to control values 60 min after CoCl(2) microinjections, confirming its reversible effect. In conclusion, our data suggest that synapses within DBB have a tonic inhibitory influence on both the cardiac parasympathetic and sympathetic components of the baroreflex. (C) 2008 Elsevier Ireland Ltd. All rights reserved.
Resumo:
The bed nucleus of stria terminalis (BST) has a tonic modulating role on the baroreflex parasympathetic component. In the present study, we verified that local BST-adrenoceptors modulate baroreflex-evoked bradycardiac responses in unanesthetized rats. Bilateral microinjection of the selective alpha(1)-adrenoceptor antagonist WB4101 (15 nmol/100 nL) into the BST increased the gain of reflex bradycardia in response to mean arterial pressure increases caused by intravenous (i.v.) infusion of phenylephrine, suggesting that BST alpha(1)-adrenoceptors modulate baroreflex bradycardiac response. Bilateral microinjection of either the selective alpha(2)-adrenoceptor antagonist RX821002 (15 nmol/100 nL) or the non-selective beta-adrenoceptor antagonist propranolol (15 nmol/100 nL) into the BST had not affected baroreflex bradycardia. Animals were pretreated intravenously with the cholinergic muscarinic receptor antagonist homatropine methyl bromide (HMB, 1.5 mg/Kg) to test the hypothesis that activation of alpha(1)-adrenoceptors in the BST would modulate the baroreflex parasympathetic component. Baroreflex bradycardiac responses evoked before and after BST treatment with WB4101 were no longer different when rats were pretreated with HMB. These results suggest that parasympathetic activation accounts for the effects saw after BST pharmacological manipulation and ruling out the possibility of a sympathetic withdraw. In conclusion, our data point out that local alpha(1)-adrenoceptors mediate the BST tonic influence on the baroreflex bradycardiac response modulating parasympathetic cardiac activity. (C) 2008 Elsevier B.V. All rights reserved.
Resumo:
At present, there is a variety of formalisms for modeling and analyzing the communication behavior of components. Due to a tremendous increase in size and complexity of embedded systems accompanied by shorter time to market cycles and cost reduction, so called behavioral type systems become more and more important. This chapter presents an overview and a taxonomy of behavioral types. The intentions of this taxonomy are to provide a guidance for software engineers and to form the basis for future research.
Resumo:
In the present study, we investigated the role played by the hypothalamic paraventricular nucleus (PVN) in the modulation of cardiac baroreflex activity in unanesthetized rats. Bilateral microinjections of the nonselective neurotransmission blocker CoCl(2) into the PVN decreased the reflex bradycardic response evoked by blood pressure increases, but had no effect on reflex tachycardia evoked by blood pressure decreases. Bilateral microinjections of the selective NMDA glutamate receptor antagonist LY235959 into the PVN caused effects that were similar to those observed after microinjections of CoCl(2), decreasing reflex bradycardia without affecting tachycardic response. The microinjection of the selective non-NMDA glutamate receptor antagonist NBQX into the PVN did not affect the baroreflex activity. Also, the microinjection of L-glutamate into the PVN increased the reflex bradycardia, an effect opposed to that observed after PVN treatment with CoCl(2) or LY235959, and this effect of L-glutamate was blocked by PVN pretreatment with LY235959. LY235959 injected into the PVN after iv. treatment with the selective beta(1)-adrenoceptor antagonist atenolol still decreased the reflex bradycardia. Taken together, our results suggest a facilitatory influence of the PVN on the bradycardic response of the baroreflex through activation of local NMDA glutamate receptors and a modulation of the cardiac parasympathetic activity. (C) 2010 Elsevier Ireland Ltd and the Japan Neuroscience Society. All rights reserved.
Resumo:
The insular cortex (IC) has been reported to modulate the cardiac parasympathetic activity of the baroreflex in unanesthetized rats. However, which neurotransmitters are involved in this modulation is still unclear. In the present study, we evaluated the possible involvement of local IC-noradrenergic neurotransmission in modulating reflex bradycardiac responses. Bilateral microinjection of the selective alpha(1)-adrenoceptor antagonist WB4101 (15 nmol/100 nL), into the IC of male Wistar rats, increased the gain of reflex bradycardia in response to mean arterial pressure (MAP) increases evoked by intravenous infusion of phenylephrine. However, bilateral microinjection of equimolar doses of either the selective alpha(2)-adrenoceptor antagonist RX821002 or the non-selective beta-adrenoceptor antagonist propranolol into the IC did not affect the baroreflex response. No effects were observed in basal MAP or heart rate values after bilateral microinjection of noradrenergic antagonists into the IC, thus suggesting no tonic influence of IC-noradrenergic neurotransmission on resting cardiovascular parameters. In conclusion, these data provide evidence that local IC-noradrenergic neurotransmission has an inhibitory influence on baroreflex responses to blood pressure increase evoked by phenylephrine infusion through activation of alpha(1)-adrenoceptors. (C) 2009 Elsevier B.V. All rights reserved.
Resumo:
Functional brain imaging techniques such as functional MRI (fMRI) that allow the in vivo investigation of the human brain have been exponentially employed to address the neurophysiological substrates of emotional processing. Despite the growing number of fMRI studies in the field, when taken separately these individual imaging studies demonstrate contrasting findings and variable pictures, and are unable to definitively characterize the neural networks underlying each specific emotional condition. Different imaging packages, as well as the statistical approaches for image processing and analysis, probably have a detrimental role by increasing the heterogeneity of findings. In particular, it is unclear to what extent the observed neurofunctional response of the brain cortex during emotional processing depends on the fMRI package used in the analysis. In this pilot study, we performed a double analysis of an fMRI dataset using emotional faces. The Statistical Parametric Mapping (SPM) version 2.6 (Wellcome Department of Cognitive Neurology, London, UK) and the XBAM 3.4 (Brain Imaging Analysis Unit, Institute of Psychiatry, Kings College London, UK) programs, which use parametric and non-parametric analysis, respectively, were used to assess our results. Both packages revealed that processing of emotional faces was associated with an increased activation in the brain`s visual areas (occipital, fusiform and lingual gyri), in the cerebellum, in the parietal cortex, in the cingulate cortex (anterior and posterior cingulate), and in the dorsolateral and ventrolateral prefrontal cortex. However, blood oxygenation level-dependent (BOLD) response in the temporal regions, insula and putamen was evident in the XBAM analysis but not in the SPM analysis. Overall, SPM and XBAM analyses revealed comparable whole-group brain responses. Further Studies are needed to explore the between-group compatibility of the different imaging packages in other cognitive and emotional processing domains. (C) 2009 Elsevier Ltd. All rights reserved.
Resumo:
Functional MRI (fMRI) data often have low signal-to-noise-ratio (SNR) and are contaminated by strong interference from other physiological sources. A promising tool for extracting signals, even under low SNR conditions, is blind source separation (BSS), or independent component analysis (ICA). BSS is based on the assumption that the detected signals are a mixture of a number of independent source signals that are linearly combined via an unknown mixing matrix. BSS seeks to determine the mixing matrix to recover the source signals based on principles of statistical independence. In most cases, extraction of all sources is unnecessary; instead, a priori information can be applied to extract only the signal of interest. Herein we propose an algorithm based on a variation of ICA, called Dependent Component Analysis (DCA), where the signal of interest is extracted using a time delay obtained from an autocorrelation analysis. We applied such method to inspect functional Magnetic Resonance Imaging (fMRI) data, aiming to find the hemodynamic response that follows neuronal activation from an auditory stimulation, in human subjects. The method localized a significant signal modulation in cortical regions corresponding to the primary auditory cortex. The results obtained by DCA were also compared to those of the General Linear Model (GLM), which is the most widely used method to analyze fMRI datasets.
Resumo:
Purpose: Orthodontic miniscrews are commonly used to achieve absolute anchorage during tooth movement. One of the most frequent complications is screw loss as a result of root contact. Increased precision during the process of miniscrew insertion would help prevent screw loss and potential root damage, improving treatment outcomes. Stereo lithographic surgical guides have been commonly used for prosthetic implants to increase the precision of insertion. The objective of this paper was to describe the use of a stereolithographic surgical guide suitable for one-component orthodontic miniscrews based on cone beam computed tomography (CBCT) data and to evaluate implant placement accuracy. Materials and Methods: Acrylic splints were adapted to the dental arches of four patients, and six radiopaque reference points were filled with gutta-percha. The patients were submitted to CBCT while they wore the occlusal splint. Another series of images was captured with the splint alone. After superimposition and segmentation, miniscrew insertion was simulated using planning software that allowed the user to check the implant position in all planes and in three dimensions. In a rapid-prototyping machine, a stereolithographic guide was fabricated with metallic sleeves located at the insertion points to allow for three-dimensional control of the pilot bur. The surgical guide was worn during surgery. After implant insertion, each patient was submitted to CBCT a second time to verify the implant position and the accuracy of the placement of the miniscrews. Results: The average differences between the planned and inserted positions for the ten miniscrews were 0.86 mm at the coronal end, 0.71 mm at the center, and 0.87 mm at the apical tip. The average angular discrepancy was 1.76 degrees. Conclusions: The use of stereolithographic surgical guides based on CBCT data allows for accurate orthodontic mini screw insertion without damaging neighboring anatomic structures. INT J ORAL MAXILLOFAC IMPLANTS 2011;26:860-865