871 resultados para sleep dependent motor skill learning


Relevância:

40.00% 40.00%

Publicador:

Resumo:

Aim of this study is to describe the possible diagnostic value of sleep disturbances in the differential diagnosis of neurodegenerative diseases characterized by parkinsonism at onset. 42 consecutive patients with parkinsonian features and disease duration up to 3 years were included in the BO-ProPark study. Each patient was evaluated twice, at baseline (T0) and 16 months later (T1). Patients were diagnosed as Parkinson disease (PD, 27 patients), PD plus (PD with cognitive impairment/dementia or dysautonomia, 4 patients) and parkinsonian syndrome (PS, 11 patients). All patients underwent a full night video-polysomnography scored by a neurologist blinded to the clinical diagnosis. Sleep efficiency and total sleep time were reduced in all patients; wake after sleep onset was higher in patients with atypical parkinsonisms than in PD patients. No significant differences between groups of patients were detected in other sleep parameters. The mean percentage of epochs with enhanced tonic muscle EMG activity during REM sleep was higher in PD plus and PS than in PD. No difference in phasic muscle EMG activity during REM sleep was seen between the two groups. REM behaviour disorder was more frequent in PD plus and PS than in PD patients. Our data suggest that REM sleep motor control is more frequently impaired at disease onset in patients with PS and PD plus compared to PD patients. The presence of RBD or an enhanced tonic muscle EMG activity in a patient with recent onset parkinsonian features should suggest a diagnosis of atypical parkinsonism, rather than PD. More data are needed to establish the diagnostic value of these features in the differential diagnosis of parkinsonisms. The evaluation of sleep disorders may be a useful tool in the differential diagnosis of parkinsonism at onset.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

It has been demonstrated that learning a second motor task after having learned a first task may interfere with the long-term consolidation of the first task. However, little is known about immediate changes in the representation of the motor memory in the early acquisition phase within the first minutes of the learning process. Therefore, we investigated such early interference effects with an implicit serial reaction time task in 55 healthy subjects. Each subject performed either a sequence learning task involving two different sequences, or a random control task. The results showed that learning the first sequence led to only a slight, short-lived interference effect in the early acquisition phase of the second sequence. Overall, learning of neither sequence was impaired. Furthermore, the two processes, sequence-unrelated task learning (i.e. general motor training) and the sequence learning itself did not appear to interfere with each other. In conclusion, although the long-term consolidation of a motor memory has been shown to be sensitive to other interfering memories, the present study suggests that the brain is initially able to acquire more than one new motor sequence within a short space of time without significant interference.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Given the complex structure of the brain, how can synaptic plasticity explain the learning and forgetting of associations when these are continuously changing? We address this question by studying different reinforcement learning rules in a multilayer network in order to reproduce monkey behavior in a visuomotor association task. Our model can only reproduce the learning performance of the monkey if the synaptic modifications depend on the pre- and postsynaptic activity, and if the intrinsic level of stochasticity is low. This favored learning rule is based on reward modulated Hebbian synaptic plasticity and shows the interesting feature that the learning performance does not substantially degrade when adding layers to the network, even for a complex problem.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

The ability to represent time is an essential component of cognition but its neural basis is unknown. Although extensively studied both behaviorally and electrophysiologically, a general theoretical framework describing the elementary neural mechanisms used by the brain to learn temporal representations is lacking. It is commonly believed that the underlying cellular mechanisms reside in high order cortical regions but recent studies show sustained neural activity in primary sensory cortices that can represent the timing of expected reward. Here, we show that local cortical networks can learn temporal representations through a simple framework predicated on reward dependent expression of synaptic plasticity. We assert that temporal representations are stored in the lateral synaptic connections between neurons and demonstrate that reward-modulated plasticity is sufficient to learn these representations. We implement our model numerically to explain reward-time learning in the primary visual cortex (V1), demonstrate experimental support, and suggest additional experimentally verifiable predictions.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Spike timing dependent plasticity (STDP) is a phenomenon in which the precise timing of spikes affects the sign and magnitude of changes in synaptic strength. STDP is often interpreted as the comprehensive learning rule for a synapse - the "first law" of synaptic plasticity. This interpretation is made explicit in theoretical models in which the total plasticity produced by complex spike patterns results from a superposition of the effects of all spike pairs. Although such models are appealing for their simplicity, they can fail dramatically. For example, the measured single-spike learning rule between hippocampal CA3 and CA1 pyramidal neurons does not predict the existence of long-term potentiation one of the best-known forms of synaptic plasticity. Layers of complexity have been added to the basic STDP model to repair predictive failures, but they have been outstripped by experimental data. We propose an alternate first law: neural activity triggers changes in key biochemical intermediates, which act as a more direct trigger of plasticity mechanisms. One particularly successful model uses intracellular calcium as the intermediate and can account for many observed properties of bidirectional plasticity. In this formulation, STDP is not itself the basis for explaining other forms of plasticity, but is instead a consequence of changes in the biochemical intermediate, calcium. Eventually a mechanism-based framework for learning rules should include other messengers, discrete change at individual synapses, spread of plasticity among neighboring synapses, and priming of hidden processes that change a synapse's susceptibility to future change. Mechanism-based models provide a rich framework for the computational representation of synaptic plasticity.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Operant conditioning is a ubiquitous but mechanistically poorly understood form of associative learning in which an animal learns the consequences of its behavior. Using a single-cell analog of operant conditioning in neuron B51 of Aplysia, we examined second-messenger pathways engaged by activity and reward and how they may provide a biochemical association underlying operant learning. Conditioning was blocked by Rp-cAMP, a peptide inhibitor of PKA, a PKC inhibitor, and by expressing a dominant-negative isoform of Ca2+-dependent PKC (apl-I). Thus, both PKA and PKC were necessary for operant conditioning. Injection of cAMP into B51 mimicked the effects of operant conditioning. Activation of PKC also mimicked conditioning but was dependent on both cAMP and PKA, suggesting that PKC acted at some point upstream of PKA activation. Our results demonstrate how these molecules can interact to mediate operant conditioning in an individual neuron important for the expression of the conditioned behavior.

Relevância:

40.00% 40.00%

Publicador:

Relevância:

40.00% 40.00%

Publicador:

Resumo:

The validation of rodent models for restless legs syndrome (Willis-Ekbom disease) and periodic limb movements during sleep requires knowledge of physiological limb motor activity during sleep in rodents. This study aimed to determine the physiological time structure of tibialis anterior activity during sleep in mice and rats, and compare it with that of healthy humans. Wild-type mice (n = 9) and rats (n = 8) were instrumented with electrodes for recording the electroencephalogram and electromyogram of neck muscles and both tibialis anterior muscles. Healthy human subjects (31 ± 1 years, n = 21) underwent overnight polysomnography. An algorithm for automatic scoring of tibialis anterior electromyogram events of mice and rats during non-rapid eye movement sleep was developed and validated. Visual scoring assisted by this algorithm had inter-rater sensitivity of 92-95% and false-positive rates of 13-19% in mice and rats. The distribution of the time intervals between consecutive tibialis anterior electromyogram events during non-rapid eye movement sleep had a single peak extending up to 10 s in mice, rats and human subjects. The tibialis anterior electromyogram events separated by intervals <10 s mainly occurred in series of two-three events, their occurrence rate in humans being lower than in mice and similar to that in rats. In conclusion, this study proposes reliable rules for scoring tibialis anterior electromyogram events during non-rapid eye movement sleep in mice and rats, demonstrating that their physiological time structure is similar to that of healthy young human subjects. These results strengthen the basis for translational rodent models of periodic limb movements during sleep and restless legs syndrome/Willis-Ekbom disease.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

The cumulative work presented here supports the hypothesis that plasticity in the cerebellar cortex and cerebellar nuclei mediates a simple associative form of motor teaming-Pavlovian eyelid conditioning. It was previously demonstrated that focal ablative lesions of cerebellar anterior lobe or pharmacological block of the cerebellar cortex output disrupted the timing of the conditioned eyeblink response, unmasking a response with a relatively fixed and very short latency to onset. The results of this thesis demonstrate that the short-latency responses are due to associative learning. Unpaired training does not support the acquisition of short-latency responses while the rate of acquisition of short-latency responses during paired training is approximately the same as that of timed conditioned responses. The acquisition of short-latency responses is dependent on an intact cerebellar cortex. Both ablative lesions of the cerebellar cortex and inactivation of cerebellar cortex output with picrotoxin block the acquisition of short-latency responses. However, once the short-latency responses are acquired neither disconnection of cerebellar cortex nor inactivation of the cerebellar nucleus block reacquisition. The results are consistent with the proposal that plasticity in the cerebellar cortex is necessary for learning the timing of conditioned responses, plasticity in the interpositus nucleus mediates the short latency responses, and cerebellar cortical output and mossy fiber input are necessary for the acquisition of short latency responses. ^

Relevância:

40.00% 40.00%

Publicador:

Resumo:

The aim of this study is to evaluate the effects obtained after applying two active learning methodologies (cooperative learning and project based learning) to the achievement of the competence problem solving. This study was carried out at the Technical University of Madrid, where these methodologies were applied to two Operating Systems courses. The first hypothesis tested was whether the implementation of active learning methodologies favours the achievement of ?problem solving?. The second hypothesis was focused on testing if students with higher rates in problem solving competence obtain better results in their academic performance. The results indicated that active learning methodologies do not produce any significant change in the generic competence ?problem solving? during the period analysed. Concerning this, we consider that students should work with these methodologies for a longer period, besides having a specific training. Nevertheless, a close correlation between problem solving self appraisal and academic performance has been detected.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

CENP-E, a kinesin-like protein that is known to associate with kinetochores during all phases of mitotic chromosome movement, is shown here to be a component of meiotic kinetochores as well. CENP-E is detected at kinetochores during metaphase I in both mice and frogs, and, as in mitosis, is relocalized to the midbody during telophase. CENP-E function is essential for meiosis I because injection of an antibody to CENP-E into mouse oocytes in prophase completely prevented progression of those oocytes past metaphase I. Beyond this, CENP-E is modified or masked during the natural, Mos-dependent, cell cycle arrest that occurs at metaphase II, although it is readily detectable at the kinetochores in metaphase II oocytes derived from mos-deficient (MOS−/−) mice that fail to arrest at metaphase II. This must reflect a masking of some CENP-E epitopes, not the absence of CENP-E, in meiosis II because a different polyclonal antibody raised to the tail of CENP-E detects CENP-E at kinetochores of metaphase II-arrested eggs and because CENP-E reappears in telophase of mouse oocytes activated in the absence of protein synthesis.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Synaptotagmin (Syt) IV is a synaptic vesicle protein. Syt IV expression is induced in the rat hippocampus after systemic kainic acid treatment. To examine the functional role of this protein in vivo, we derived Syt IV null [Syt IV(−/−)] mutant mice. Studies with the rotorod revealed that the Syt IV mutants have impaired motor coordination, a result consistent with constitutive Syt IV expression in the cerebellum. Because Syt IV is thought to modulate synaptic function, we also have examined Syt IV mutant mice in learning and memory tests. Our studies show that the Syt IV mutation disrupts contextual fear conditioning, a learning task sensitive to hippocampal and amygdala lesions. In contrast, cued fear conditioning is normal in the Syt IV mutants, suggesting that this mutation did not disrupt amygdala function. Conditioned taste aversion, which also depends on the amygdala, is normal in the Syt IV mutants. Consistent with the idea that the Syt IV mutation preferentially affects hippocampal function, Syt IV mutant mice also display impaired social transmission of food preference. These studies demonstrate that Syt IV is critical for brain function and suggest that the Syt IV mutation affects hippocampal-dependent learning and memory, as well as motor coordination.