732 resultados para single-mode fiber
Resumo:
Theoretical investigations have been carried out to analyze and compare the link power budget and power dissipation of non-return-to-zero (NRZ), pulse amplitude modulation-4 (PAM-4), carrierless amplitude and phase modulation-16 (CAP-16) and 16-quadrature amplitude modulation-orthogonal frequency division multiplexing (16-QAM-OFDM) systems for data center interconnect scenarios. It is shown that for multimode fiber (MMF) links, NRZ modulation schemes with electronic equalization offer the best link power budget margins with the least power dissipation for short transmission distances up to 200 m; while OOFDM is the only scheme which can support a distance of 300 m albeit with power dissipation as high as 4 times that of NRZ. For short single mode fiber (SMF) links, all the modulation schemes offer similar link power budget margins for fiber lengths up to 15 km, but NRZ and PAM-4 are preferable due to their system simplicity and low power consumption. For lengths of up to 30 km, CAP-16 and OOFDM are required although the schemes consume 2 and 4 times as much power respectively compared to that of NRZ. OOFDM alone allows link operation up to 35 km distances. © 1983-2012 IEEE.
Resumo:
Real-time orthogonal multipulse modulation is demonstrated at 56 Gb/s with transmission over 500 m of single-mode fiber. Up to 2 dBo power budget advantage is predicted relative to alternatives such as PAM4. © 2013 OSA.
Resumo:
Real-time orthogonal multipulse modulation is demonstrated at 56 Gb/s with transmission over 500 m of single-mode fiber. Up to 2 dBo power budget advantage is predicted relative to alternatives such as PAM4. © 2013 OSA.
Resumo:
The first known experimental demonstrations of a 10 Gb/s hybrid CAP-2/QAM-2 and a 20 Gb/s hybrid CAP-4/QAM-4 transmitter/receiver-based optical data link are performed. Successful transmission over 4.3 km of standard single-mode fiber (SMF) is achieved, with a link power penalty ∼0.4 dBo for CAP-2/QAM-2 and ∼1.5 dBo for CAP-4/QAM-4 at BER=10(-9).
Resumo:
A 40-Gb/s monolithically integrated transmitter containing an InGaAsP multiple-quantum-well electroabsorption modulator (EAM) with lumped electrode and a distributed-feedback semiconductor laser is demonstrated. Superior characteristics are exhibited for the device, such as low threshold current of 20 mA, over 40-dB sidemode suppression ratio at 1550 nm, and more than 30-dB dc extinction ratio when coupled into a single-mode fiber. By adopting a deep ridge waveguide and planar electrode structures combined with buried benzocyclobutene, the capacitance of the EAM is reduced to 0.18 pF and the small-signal modulation bandwidth exceeds 33 GHz. Negative chirp operation is also realized when the bias voltage is beyond 1.6 V.
Resumo:
A thermo-optic variable optical attenuator (VOA) based on a Mach-Zehnder interferometer and multimode-interference coupler is fabricated. Not a single-mode but a multimode waveguide is used as the input and output structures of the optical field, which greatly reduces the coupling loss of the VOA with a normal single-mode fiber. The insertion loss of the fabricated VOA is 2.52 to 2.82 dB at the wavelength of 1520 to 1570 nm. The polarization dependent loss is 0.28 to 0.45 dB at the same wavelength range. Its maximum attenuation range is up to 26.3 dB when its power consumption is 369 mW. The response frequency of the fabricated VOA is about 10 kHz. (C) 2004 Society of Photo-Optical Instrumentation Engineers.
Resumo:
A strained InGaAsP-InP multiple-quantum-well DFB laser monolithically integrated with electroabsorption modulator by ultra-low-pressure (22 mbar) selective-area-growth is presented. The integrated chip exhibits superior characteristics, such as low threshold current of 19 mA, single-mode operation around 1550 nm range with side-mode suppression ratio over 40 dB, and larger than 16 dB extinction ratio when coupled into a single-mode fiber. More than 10 GHz modulation bandwidth is also achieved. After packaged in a compact module, the device successfully performs 10-Gb/s NRZ transmission experiments through 53.3 km of standard fiber with 8.7 dB dynamic extinction ratio. A receiver sensitivity of -18.9 dBm at bit-error-rate of 10(-1)0 is confirmed. (c) 2005 Elsevier B.V. All rights reserved.
Resumo:
In this work, a novel light source of strained InGaAsP/InGaAsP MQW EAM monolithically integrated with DFB laser is fabricated by ultra-low-pressure (22 x 10(2) Pa) selective area growth ( SAG) MOCVD technique. Superior device performances have been obtained, sue h as low threshold current of 19 mA, output light power of about 7 mW, and over 16 dB extinction ratio at 5 V applied voltage when coupled into a single mode fiber. Over 10 GHz 3 dB bandwidth in EAM part is developed with a driving voltage of 3 V. After the chip is packaged into a 7-pin butterfly compact module, 10-Gb/s NRZ transmission experiments are successfully performed in standard fiber. A clearly-open eye diagram is achieved in the module output with over 8.3 dB dynamic extinction ratio. Power penalty less than 1.5 dB has been obtained after transmission through 53.3 km of standard fiber, which demonstrates that high-speed, low chirp EAM/DFB integrated light source can be obtained by ultra-low-pressure (22 x 102 Pa) SAG method.
Resumo:
In this work, a novel light source of tandem InGaAsP/InGaAsP multiple quantum well electroabsoption modulator( EAM ) monolithically integrated with distributed feedback laser is fabricated by ultra-low-pressure ( 22 x 10(2) Pa ) selective area growth metal-organic chemical vapor diposition technique. Superior device performances have been obtained, such as low threshold current of 19 mA, output light power of 4.5 mW, and over 20 dB extinction ratio at 5 V applied voltage when coupled into a single mode fiber. Over 10 GHz 3dB bandwidth in EAM part is developed with a driving voltage of 2 V. Using this sinusoidal voltage driven integrated device, 10 GHz repetition rate pulse with an actual width of 13.7 ps without any compression elements is obtained due to the gate operation effect of tandem EAMs.
Resumo:
A new type of self-aligned spotsize converter (SSC) integrated 1.55 mum DFB lasers had been proposed in this article. The upper optical confinement layer and the butt-coupled tapered thickness waveguide were regrown simultaneously, which not only offered the separate optimization of the active region and the integrated SSC, but also reduced the difficulty of the butt-joint selective regrowth. The vertical and horizontal far field angles were 9degrees and 12degrees respectively, the 1- dB misalignment tolerance were both 3.6 and 3.4 mum. The directed coupling efficiency to tapered single mode fiber was 48%.
Resumo:
Wavelength tunable electro-absorption modulated distributed Bragg reflector lasers (TEMLs) are promising light source in dense wavelength division multiplexing (DWDM) optical fiber communication system due to high modulation speed, small chirp, low drive voltage, compactness and fast wavelength tuning ability. Thus, increased the transmission capacity, the functionality and the flexibility are provided. Materials with bandgap difference as large as 250nm have been integrated on the same wafer by a combined technique of selective area growth (SAG) and quantum well intermixing (QWI), which supplies a flexible and controllable platform for the need of photonic integrated circuits (PIC). A TEML has been fabricated by this technique for the first time. The component has superior characteristics as following: threshold current of 37mA, output power of 3.5mW at 100mA injection and 0V modulator bias voltage, extinction ratio of more than 20 dB with modulator reverse voltage from 0V to 2V when coupled into a single mode fiber, and wavelength tuning range of 4.4nm covering 6 100-GHz WDM channels. A clearly open eye diagram is observed when the integrated EAM is driven with a 10-Gb/s electrical NRZ signal. A good transmission characteristic is exhibited with power penalties less than 2.2 dB at a bit error ratio (BER) of 10(-10) after 44.4 km standard fiber transmission.
Resumo:
A novel device of tandem multiple quantum wells (MQWs) electroabsorption modulators (EAMs) monolithically integrated with DFB laser is fabricated by ultra-low-pressure (22 mbar) selective area guowth (SAG) MOCVD technique. Experimental results exhibit superior device characteristics with low threshold of 19 mX output light power of 4.5 mW and over 20 dB extinction ratio when coupled into a single mode Fiber. Moreover, over 10 GHz modulation bandwidth is developed with a driving voltage of 2 V. Using I this sinusoidal voltage driven integrated device, 10GHz repetition rate pulse with a width of 13.7 ps without any compression elements is obtained.
Resumo:
Micro Fabry-Perot (F-P) interferometers (MFPIs) are machined in a single-mode fiber (SMF) and a photonic crystal fiber (PCF) by using a near-infrared femtosecond laser, respectively. The strain and temperature characteristics of the two MFPIs with an identical cavity length are investigated and the experimental results show that the strain sensitivity of the PCF-based MFPI is smaller than that of the SMF-based MFPI due to their different waveguide structures, while the two MFPIs have close temperature sensitivities which are much smaller than that of an in-line SMF etalon sensor reported previously. These MFPIs in silica fibers are compact, stable, inexpensive, capable for mass-production and easy fabrication, offering great potentials for wide sensing applications. (c) 2007 Optical Society of America.
Resumo:
SPIE
Resumo:
Harmonic millimeter wave (mm-wave) generation and frequency up-conversion are experimentally demonstrated using optical injection locking and Brillouin selective sideband amplification (BSSA) induced by stimulated Brillouin scattering in a 10-km single-mode fiber. By using this method, we successfully generate third-harmonic mm-wave at 27 GHz (f(LO) - 9 GHz) with single sideband (SSB) modulation and up-convert the 2GHz intermediate frequency signal into the mm-wave band with single mode modulation of the SSB modes. In addition, the mm-wave carrier obtains more than 23 dB power gain due to the BSSA. The transmission experiments show that the generated mm-wave and up-converted signals indicate strong immunity against the chromatic dispersion of the fibers.