944 resultados para silver nanocrystals
Resumo:
In the present study silver nanoparticles were rapidly synthesized at room temperature by treating silver ions with the Citrus limon (lemon) extract The effect of various process parameters like the reductant con centration mixing ratio of the reactants and the concentration of silver nitrate were studied in detail In the standardized process 10(-2) M silver nitrate solution was interacted for 411 with lemon Juice (2% citric acid concentration and 0 5% ascorbic acid concentration) in the ratio of 1 4(vol vol) The formation of silver nanoparticles was confirmed by Surface Plasmon Resonance as determined by UV-Visible spectra in the range of 400-500 nm X ray diffraction analysis revealed the distinctive facets (1 1 1 200 220 2 2 2 and 3 1 1 planes) of silver nanoparticles We found that citric acid was the principal reducing agent for the nanosynthesis process FT IR spectral studies demonstrated citric acid as the probable stabilizing agent Silver nanoparticles below 50 nm with spherical and spheroidal shape were observed from transmission electron microscopy The correlation between absorption maxima and particle sizes were derived for different UV-Visible absorption maxima (corresponding to different citric acid concentrations) employing MiePlot v 3 4 The theoretical particle size corresponding to 2% citric acid concentration was corn pared to those obtained by various experimental techniques like X ray diffraction analysis atomic force microscopy and transmission electron microscopy (C) 2010 Elsevier B V All rights reserved
Resumo:
Following an earlier study (J. Am. Chem Soc. 2007, 129, 4470) describing a very unusual growth kinetics of ZnO nanoparticles, we critically evaluate here the proposed mechanism involving a crucial role of the alkali base ion in controlling the growth of ZnO nanoparticles using other alkali bases, namely, LiOH and KOH. While confirming the earlier conclusion of the growth of ZnO nanoparticles being hindered by an effective passivating layer of cations present in the reaction mixture and thereby generalizing this phenomenon, present experimental data reveal an intriguing nonmonotonic dependence of the passivation efficacy on the ionic size of the alkali base ion. This unexpected behavior is rationalized on the basis of two opposing factors: (a) solvated cationic radii and (b) dissociation constant of the base.
Resumo:
The constitutive behaviour of agr — nickel silver in the temperature range 700–950 °C and strain rate range 0.001–100 s–1 was characterized with the help of a processing map generated on the basis of the principles of the ldquodynamic materials modelrdquo of Prasadet al Using the flow stress data, processing maps showing the variation of the efficiency of power dissipation (given by 2m/(m+1) wherem is the strain-rate sensitivity) with temperature and strain rate were obtained, agr-nickel silver exhibits a single domain at temperatures greater than 750 °C and at strain rates lower than 1s–1, with a maximum efficiency of 38% occurring at about 950 °C and at a strain rate of 0.1 s–1. In the domain the material undergoes dynamic recrystallization (DRX). On the basis of a model, it is shown that the DRX is controlled by the rate of interface formation (nucleation) which depends on the diffusion-controlled process of thermal recovery by climb. At high strain rates (10 and 100s–1) the material undergoes microstructural instabilities, the manifestations of which are in the form of adiabatic shear bands and strain markings.
Resumo:
The constitutive behaviour of agr-beta nickel silver in the temperature range 600�850 °C and strainrate range 0.001�100s�1 was characterized with the help of a processing map generated on the principles of the dynamic materials model. On the basis of the flow-stress data, processing maps showing the variation of the efficiency of power dissipation (given by [2m/(m+1)], wherem is the strain-rate sensitivity) with temperature and strain rate were obtained, agr-beta nickel silver exhibits a single domain at temperatures greater than 700 °C and at strain rates lower than 1 s�1 with a maximum efficiency of power dissipation of about 42% occurring at about 850 °C and at 0.1 s�1. In the domain, the agr phase undergoes dynamic recrystallization and controls the deformation of the alloy, while the beta phase deforms superplastically. Optimum conditions for the processing of agr-beta nickel silver are 850 °C and 0.1 s�1. The material undergoes unstable flow at strain rates of 10 and 100 s�1 and in the temperature range 600�750 °C, manifestated in the form of adiabatic shear bands.
Size dependence of the bulk modulus of semiconductor nanocrystals from first-principles calculations
Resumo:
The variation in the bulk modulus of semiconductor nanoparticles has been studied within first-principles electronic-structure calculations using the local density approximation (LDA) for the exchange correlation. Quantum Monte Carlo calculations carried out for a silicon nanocrystal Si87H76 provided reasonable agreement with the LDA results. An enhancement was observed in the bulk modulus as the size of the nanoparticle was decreased, with modest enhancements being predicted for the largest nanoparticles studied here, a size just accessible in experiments. To access larger sizes, we fit our calculated bulk moduli to the same empirical law for all materials, the asymptote of which is the bulk value of the modulus. This was found to be within 2-10% of the independently calculated value. The origin of the enhancement has been discussed in terms of Cohen's empirical law M.L. Cohen, Phys. Rev. B 32, 7988 (1985)] as well as other possible scenarios.
Resumo:
Silver selenide thin films of thickness between 80 nm and 160 nm were prepared by thermal evaporation technique at a high vacuum better than 2x10(-5)mbar on well cleaned glass substrates at a deposition rate of 0.2 nm/sec. Silver selenide thin films were polycrystalline with orthorhombic structure. Ellipsometric spectra of silver selenide thin films have been recorded in the wavelength range between 300 nm and 700 nm. Optical constants like refractive index, extinction coefficient, absorption coefficient, and optical band gap of silver selenide thin film have been calculated from the recorded spectra. The refractive index of silver selenide has been found to vary between 1.9 and 3.2 and the extinction coefficient varies from 0.5 to 1.6 with respect to their corresponding thickness of the films. Transmittance spectra of these films have been recorded in the wavelength range between 300 nm and 900 nm and its spectral data are analysed. The photoluminescence studies have been carried out on silver selenide thin films and the strong emission peak is found around 1.7 eV. The calculated optical band of thermally evaporated silver selenide thin films is found to be around 1.7 eV from their Ellipsometric, UV-Visible and Photoluminescence spectroscopic studies.
Resumo:
Silver nanoparticles are being extensively studied due to their widespread applications and unique properties. In the present study, the growth kinetics of silver nanoparticles as synthesized on reduction of silver nitrate solution by aqueous extract of Azadirachta indica leaves was investigated. The formation of silver nanoparticles was preliminarily monitored by measuring the absorption maxima at different time intervals after adding the reducing agent to the silver salt solution (0.5, 1, 1.5, 2, 2.5, 3, 3.5 and 4 h). At different time points characterization studies were conducted using X-ray diffraction studies, FT-IR techniques, zeta potential studies and transmission electron microscopy. The total available silver in the reaction medium was determined at different durations using ICP-OES. The changes in reduction potential in the medium were also monitored using potentiometric analysis. The results confirm a definite change in the medium pertaining to formation of the stable nanoparticles after 2 h, and a significant increase in the agglomeration tendency after 4 h of interaction. The growth kinetic data of the nanoparticles till 3.5 h was found to fit the LSW model confirming diffusion limited growth. (C) 2011 Elsevier B.V. All rights reserved.
Resumo:
The present investigation explores the adaptability of a microwave assisted route to obtain silver nanoparticles by the reduction of AgNO3 with vanillin, an environmentally benign material. Anionic surfactants such as AOT and SDS were used separately for encapsulating AgNPs and their role was compared. The UV-Visible absorption spectra present a broad SPR band consisting of two peaks suggesting the formation of silver nanoparticle with bimodal size distribution. The TEM image shows particles with spherical and hexagonal morphologies which confirms the results of UV-Vis studies. The anisotropy in the particle morphology can be attributed to the surface oxidation which in turn produces Ag@Ag2O core-shell nanostructures. Thus an intriguing feature of this system is that the obtained colloid is a mixture of AgNPs with and without Ag2O layers. Studies on the influence of pH on the stability of the synthesized nanoparticles revealed that the presence of excess Ag2O layers has a profound influence on it. Ag2O layers can be removed from AgNPs' surface by changing the solution pH to the acidic regime. The present study attests the enhanced ability of AOT in stabilizing the AgNPs in aqueous media. (C) 2011 Elsevier B.V. All rights reserved.
Resumo:
Bremsstrahlung isochromat spectroscopy (BIS) along with ultraviolet and X-ray photoelectron spectroscopy (UPS and XPS) has been employed to investigate the electron states of Pd and Ag deposited on amorphous graphite at different coverages. The metal core level binding energies increase with decreasing cluster size while the UPS valence bands show a decrease in the 4d states at E(F) accompanied by a shift in the intensity maximum to higher binding energies. BIS measurements show the emergence of new states closer to E(F) with increase in the cluster size. It is pointed out that the observed spectral shifts cannot be accounted for by final-state effects alone and that initial-state effects have a significant role. It therefore appears that a decrease in cluster size is accompanied by a metal-insulator transition.
Resumo:
We prove that CdS nanocrystals can be thermodynamically stabilized in both wurtzite and zinc-blende crystallographic phases at will, just by the proper choice of the capping ligand. As a striking demonstration of this, the largest CdS nanocrystals (similar to 15 nm diameter) ever formed with the zinc-blende structure have been synthesized at a high reaction temperature of 310 degrees C, in contrast to previous reports suggesting the formation of zinc-blende CdS only in the small size limit (< 4.5 nm) or at a lower reaction temperature (<= 240 degrees C). Theoretical analysis establishes that the binding energy of trioctylphosphine molecules on the (001) surface of zinc-blende CdS is significantly larger than that for any of the wurtzite planes. Consequently, trioctylphosphine as a capping agent stabilizes the zinc-blende phase via influencing the surface energy that plays an important role in the overall energetics of a nanocrystal. Besides achieving giant zinc-blende CdS nanocrystals, this new understanding allows us to prepare CdSe and CdSe/CdS core/shell nanocrystals in the zinc-blende structure.
Resumo:
We are reporting a novel green approach to incorporate silver nanoparticles (NPs) selectively in the polyelectrolyte capsule shell for remote opening of polyelectrolyte capsules. This approach involves in situ reduction of silver nitrate to silver NPs using PEG as a reducing agent (polyol reduction method). These nanostructured capsules were prepared via layer by layer (LbL) assembly of poly(allylamine hydrochloride) (PAH) and dextran sulfate (DS) on silica template followed by the synthesis of silver NPs and subsequently the dissolution of the silica core. The size of silver nanoparticles synthesized was 60 +/- 20 nm which increased to 100 +/- 20 nm when the concentration of AgNO3 increased from 25 mM to 50 mM. The incorporated silver NPs induced rupture and deformation of the capsules under laser irradiation. This method has advantages over other conventional methods involving chemical agents that are associated with cytotoxicity in biological applications such as drug delivery and catalysis. (C) 2011 Elsevier B.V. All rights reserved.
Resumo:
The article presents a generalized analytical expression for description of the integral excess Gibbs free energy of mixing of a ternary system. Twelve constants of the equation are assessed by the least mean squares regressional analysis of the experimental integral excess data of the constituent binaries; three ternary parameters are evaluated by a regressional analysis based on the partial experimental data of a component of the ternary system. The assessed values of the ternary parameters describe the nature of the ternary interaction in the system. Activities and isoactivities of the components in the Ag-Au-Cu system at 1350 K are calculated and found to be in good agreement with the experimental data. This analytical treatment is particularly useful to ternary systems where the thermodynamic data are available from different sources.
Resumo:
A simplified structural model to study the ionic transport in silver based glasses has been formulated. The diffusion of silver ion under the influence of coulombic interactions of mobile cation and anions has been studied. Monte Carlo simulations of silver ion hopping in glass have suggested two different kinds of population of silver ions. We discuss the results of variation in diffusion constant with dopant (AgI) concentration using the diffusion path model. (C) 1997 Elsevier-Science S.A.
Resumo:
A distinctive characteristic of silver in oxygen incorporation of oxide thin films during pulsed laser ablation has been discovered. Optical emission spectroscopy studies of laser-induced plume of Ag-target indicates the presence of AgO species whose concentration increases with an increase in oxygen partial pressure. The formation of AgO in laser-plume has been found to be very useful for the realization of high temperature superconducting YBa2Cu3O7-delta (YBCO) and giant magnetoresistive La0.7MnO3-delta (LMO) thin films with dramatically superior quality if the target materials contained a small amount of silver. The improvement in the quality of these films is brought about by the supply of atomic oxygen to oxide lattices during their formation. This becomes possible due to the fact that Ag, after it is ablated with other constituent materials in the target, gets moderately oxidized in an oxygen atmosphere and the oxidized species dissociate back into Ag and nascent O at the substrate surface. The nascent oxygen is very highly reactive and is easily assimilated into the lattice of these compounds. (C) 1997 Elsevier Science S.A.
Resumo:
The structure and dynamics of silver ion conducting AgI-Ag2MoO4 glasses have been simulated by molecular dynamics simulation over a wide range of compositions. Formation of silver iodide like aggregates have been identified only in the AgI rich glasses. Increase in silver ion conductivity with an increase in AgI content in the glass is seen as in experiments. The dynamics of ion transport suggests that Ag+ ion transport occurs largely through paths connected by silver ion sites of mixed iodide-oxide coordination. The Van Hove correlation functions indicate that Ag+ ions prefer migration along the pathways formed with connected sites of similar coordination.