968 resultados para sensible heat loss


Relevância:

80.00% 80.00%

Publicador:

Resumo:

The influence of the aspect ratio (building height/street canyon width) and the mean building height of cities on local energy fluxes and temperatures is studied by means of an Urban Canopy Model (UCM) coupled with a one-dimensional second-order turbulence closure model. The UCM presented is similar to the Town Energy Balance (TEB) model in most of its features but differs in a few important aspects. In particular, the street canyon walls are treated separately which leads to a different budget of radiation within the street canyon walls. The UCM has been calibrated using observations of incoming global and diffuse solar radiation, incoming long-wave radiation and air temperature at a site in So Paulo, Brazil. Sensitivity studies with various aspect ratios have been performed to assess their impact on urban temperatures and energy fluxes at the top of the canopy layer. In these simulations, it is assumed that the anthropogenic heat flux and latent heat fluxes are negligible. Results show that the simulated net radiation and sensible heat fluxes at the top of the canopy decrease and the stored heat increases as the aspect ratio increases. The simulated air temperature follows the behavior of the sensible heat flux. (C) 2010 Elsevier Ltd. All rights reserved.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

The eddy covariance method was used to measure energy and water balance of a plantation of Eucalyptus (grandis x urophylla) hybrids over a 2 year period. The average daily evaporation rates were 5.4 (+/- 2.0) mm day(-1) in summer, but fell to 1.2 (+/- 0.3) mm day(-1) in winter. In contrast, the sensible heat flux was relatively low in summer but dominated the energy balance in winter. Evaporation accounted for 80% and 26% of the available energy, in summer and winter respectively. The annual evaporation was 82% (1124 mm) and 96% (1235 mm) of the annual rainfall recorded during the first and second year, respectively. Daily average canopy and aerodynamic conductance to water vapour were in the summer 51.9 (+/- 38.4) mm s(-1) 84.1 (+/- 25.6) mm s(-1), respectively; and in the winter 6.0 (+/- 10.5) mm s(-1) and 111.6 (+/- 24.6) mm s(-1), respectively. (C) 2010 Elsevier B.V. All rights reserved.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

The accurate estimate of the surface longwave fluxes contribution is important for the calculation of the surface radiation budget, which in turn controls all the components of the surface energy budget, such as evaporation and the sensible heat fluxes. This study evaluates the performance of the various downward longwave radiation parameterizations for clear and all-sky days applied to the Sertozinho region in So Paulo, Brazil. Equations have been adjusted to the observations of longwave radiation. The adjusted equations were evaluated for every hour throughout the day and the results showed good fits for most of the day, except near dawn and sunset, followed by nighttime. The seasonal variation was studied by comparing the dry period against the rainy period in the dataset. The least square linear regressions resulted in coefficients equal to the coefficients found for the complete period, both in the dry period and in the rainy period. It is expected that the best fit equation to the observed data for this site be used to produce estimates in other regions of the State of So Paulo, where such information is not available.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

A study of the potential role of aerosols in modifying clouds and precipitation is presented using a numerical atmospheric model. Measurements of cloud condensation nuclei (CCN) and cloud size distribution properties taken in the southwestern Amazon region during the transition from dry to wet seasons were used as guidelines to define the microphysical parameters for the simulations. Numerical simulations were carried out using the Brazilian Development on Regional Atmospheric Modeling System, and the results presented considerable sensitivity to changes in these parameters. High CCN concentrations, typical of polluted days, were found to result in increases or decreases in total precipitation, depending on the level of pollution used as a reference, showing a complexity that parallels the aerosol-precipitation interaction. Our results show that on the grids evaluated, higher CCN concentrations reduced low-to-moderate rainfall rates and increased high rainfall rates. The principal consequence of the increased pollution was a change from a warm to a cold rain process, which affected the maximum and overall mean accumulated precipitation. Under polluted conditions, cloud cover diminished, allowing greater amounts of solar radiation to reach the surface. Aerosol absorption of radiation in the lower layers of the atmosphere delayed convective evolution but produced higher maximum rainfall rates due to increased instability. In addition, the intensity of the surface sensible heat flux, as well as that of the latent heat flux, was reduced by the lower temperature difference between surface and air, producing greater energy stores at the surface.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

This article discusses seasonal and interannual variations of the evapotranspiration (ET) rates in Bananal Island floodplain, Brazil. Measurements included ET and sensible heat flux using the eddy covariance method, atmospheric forcings (net radiation, Rn, vapor pressure deficit, VPD, wind speed and air temperature), soil moisture profiles, groundwater level and flood height, taken from November 2003 to December 2006. For the hydrological years (October-September) of 2003/2004, 2004/2005 and 2005/2006, the accumulated precipitation was 1692, 1471, 1914 mm and the accumulated ET was 1361, 1318 and 1317 mm, respectively. Seasonal analyses indicated that ET decreased in the dry season (average 3.7 mm day(-1)), despite the simultaneous increase in Rn, air temperature and VPD. The increase of ET in the wet season and particularly in the flood period (average 4.1 mm day(-1)) showed that the free water surface evaporation strongly influenced the energy exchange. Soil moisture, which was substantially depleted during the dry season, and adaptative vegetation mechanisms such as leaf senescence contributed to limit the dry season ET. Strong drainage within permeable sandy soils helped to explain the soil moisture depletion. These results suggest that the Bananal flooding area shows a different pattern in relation to the upland Amazon forests, being more similar to the savanna strictu senso areas in central Brazil. For example, seasonal ET variation was not in phase with Rn; the wet season ET was higher than the dry season ET; and the system stored only a tiny memory of the flooding period, being sensitive to extended drought periods.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

The  aim  of  this  master  thesis  is  an  investigation  of  the  thermal  performance  of  a  thermal compound parabolic concentrating (CPC) collector from Solarus. The collector consists of two troughs with absorbers which are coated with different types of paint with  unknown  properties.  The  lower  and  upper  trough  of  the  collector  have  been  tested individually. In  order  to  accomplish  the  performance  of  the  two  collectors,  a  thorough  literature  study  in  the  fields  of  CPC  technology,  various  test  methods,  test  standards  for  solar thermal  collectors  as  well  as  the  latest  articles  relating  on  the  subject  were  carried  out. In addition, the set‐up of the thermal test rig was part of the thesis as well. The thermal  performance  was  tested  according  to  the  steady  state  test  method  as  described in the European standard 12975‐2. Furthermore, the thermal performance of  a  conventional  flat  plate  collector  was  carried  out  for  verification  of  the  test  method. The  CPC‐Thermal  collector  from  Solarus  was  tested  in  2013  and  the  results  showed  four  times  higher  values  of  the  heat  loss  coefficient  UL (8.4  W/m²K)  than  what  has been reported for a commercial collector from Solarus. This value was assumed to be too large and it was assumed that the large value was a result of the test method used that time. Therefore, another aim was the comparison of the results achieved in this work with the results from the tests performed in 2013. The results of the thermal performance showed that the optical efficiency of the lower trough of the CPC‐T collector is 77±5% and the corresponding heat loss coefficient UL 4.84±0.20  W/m²K.  The  upper  trough  achieved  an  optical  efficiency  of  75±6  %  and  a  heat loss coefficient UL of 6.45±0.27 W/m²K. The results of the heat loss coefficients  are  valid  for  temperature  intervals  between  20°C  and  80°C.  The  different  absorber paintings have a significant impact on the results, the lower trough performs overall better.  The  results  achieved  in  this  thesis  show  lower  heat  loss  coefficients UL and higher optical efficiencies compared to the results from 2013. 

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Artificial neural network (NN) is an alternative way (to conventional physical or chemical based modeling technique) to solve complex ill-defined problems. Neural networks trained from historical data are able to handle nonlinear problems and to find the relationship between input data and output data when there is no obvious one between them. Neural Networks has been successfully used in control, robotic, pattern recognition, forecasting areas. This paper presents an application of neural networks in finding some key factors eg. heat loss factor in power station modeling process. In the conventional modeling of power station, these factors such as heat loss are normally determined by experience or “rule of thumb”. To get an accurate estimation of these factors special experiment needs to be carried out and is a very time consuming process. In this paper the neural networks (technique) is used to assist this difficult conventional modeling process. The historical data from a real running brown coal power station in Victoria has been used to train the neural network model and the outcomes of the trained NN model will be used to determine the factors in the conventional energy modeling of the power stations that is under the development as a part of an on-going ARC Linkage project aiming to detail modeling the internal energy flows in the power station.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

The fur seal (Arctocephalus spp. and Callorhinus spp., members of the pinniped family) is a mammal with the unusual capability to modulate its lactation cycle by turning milk production on and off without the typical mammalian regression and involution of the mammary gland. Lactation has evolved from constraints arising from the spatial and temporal separation of infant nursing and maternal foraging as the mother gives birth and feeds the pup on land while acquisition of nutrients for milk production occurs at sea. The lactation cycle begins with the female fur seal undergoing a perinatal fast of approximately 1 wk, after which time she departs the breeding colony to forage at sea. For the remainder of the long lactation period (116–540 days), the mother alternates between short periods ashore suckling the young with longer periods of up to 4 wk of foraging at sea. Milk production continues while foraging at sea, but at less than 20% the rate of production on land. Fur seals produce one of the richest milk reported, with a very high lipid content contributing up to 85% of total energy. This feature serves as an adaptation to the young's need to produce an insulating blubber layer against heat loss and to serve as an energy store when the mother is away foraging at sea. This atypical pattern of lactation means mothers have long periods with no suckling stimulus and can transfer high-energy milk rapidly while on land to minimize time away from foraging grounds. The absence of suckling stimulus and milk removal during foraging does not result in the onset of involution with associated apoptosis of mammary secretory cells and a subsequent progressive breakdown of the cellular structure of the mammary gland. The mechanisms controlling lactation in the fur seal mammary gland have been investigated using molecular and cellular techniques. These findings have shed light on the processes by which the unique features of lactation in the fur seal are regulated.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Small-scale producers of dried products in rural areas of developing countries must often rely on sun drying to dry their crops, but this can be unreliable and produce an inferior product. There is therefore a need for simple and inexpensive combustion devices that can be fabricated and used locally. A wood burner has been constructed from a "200 litre" steel drum and has then been evaluated experimentally. The thermal efficiency of the burner was found to be 31% in two trials. An energy balance, calculated for three trials, was within + 16%. Approximately one third of the energy available in the wood was lost in the flue gases, either as sensible heat or unburned volatile gases. Excess combustion air through the burner was calculated and measured to be approximately 400% of the stoichiometric requirements. A significant amount of energy was required to heat the thermal mass surrounding the burner, indicating that a lightweight insulated structure would be more suitable in most circumstances.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

In recent times there has been growing interest in the integration of solar collectors, for water heating, into the façade of buildings. However, the design methodology of these devices remains largely the same as typical “stand-alone” collectors. As such it is still common for materials with a high thermal resistance to be used for insulating the rear surface of these collectors.

Unlike a “stand-alone” solar collector that is exposed to the atmosphere at all faces; a building integrated system allows the opportunity for air to act as an insulator at the rear surface of the solar collector. The use of convection suppression devices has been widely discussed in the literature as a means of reducing natural convection heat loss from the front surface of glazed solar collectors. However in this study the use of baffles in an attic was examined as a means of suppressing heat loss by natural convection from the rear surface of a roof-integrated solar collector. The aim of the study was to examine whether the use of baffles would allow the cost of building integrated collectors to be reduced by removing the cost of insulating material.

To determine the effect of baffles in the attic space at the rear surface of the collector, a 3-dimensional triangular cross sectioned enclosure with a vertical aspect ratio of 0.5 and a horizontal aspect ratio of 3.3 was modelled. The flow patterns and heat transfer in the enclosure were determined for Grashof Numbers in the range of 106 to 107 using a commercially available finite volume CFD solver.
It was found that the use of a single adiabatic baffle mounted vertically downwards from the apex, and extending the length of the enclosure, would alter the flow such that the heat transfer due to natural convection was reduced with respect to the length of the baffle.

Furthermore, it was observed that a series of convection cells, not previously reported in the literature, appeared to exist along the length of the enclosure. As such, it may be possible to derive additional benefit in reducing the heat transfer by adding lateral baffles in addition to the single longitudinal baffle modelled in this study.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

This paper centres around the presentation of multiple measured results on a psychrometric chart. The psychrometric chart was programmed in Microsoft Office Excel to accommodate measured results. It was written because existing programs appear not to cater for the researcher wishing to enter results electronically onto the chart. Furthermore, many existing charts are complex and cluttered displaying up to ten attributes, being intended for engineering design, whereas presenting the behaviour of living and working environments is focused on wet and dry bulb temperature and relative humidity. As well as results, users would also like to specify and adjust the ‘comfort zone’ (a shaded area on the chart) for different ‘adaptive’ or ‘seasonal’ conditions. The comfort zone is bounded by lines of constant heat loss from the skin, relative humidity and wet-bulb temperature. The paper presents various applications of the psychrometric chart for the analysis and reporting of research and discusses the programming of Microsoft Office Excel to generate the chart and display user data.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Allen’s rule proposes that the appendages of endotherms are smaller, relative to body size, in colder climates, in order to reduce heat loss. Empirical support for Allen’s rule is mainly derived from occasional reports of geographical clines in extremity size of individual species. Interspecific evidence is restricted to two studies of leg proportions in seabirds and shorebirds. We used phylogenetic comparative analyses of 214 bird species to examine whether bird bills, significant sites of heat exchange, conform to Allen’s rule. The species comprised eight diverse taxonomic groups—toucans, African barbets, Australian parrots, estrildid finches, Canadian galliforms, penguins, gulls, and terns. Across all species, there were strongly significant relationships between bill length and both latitude and environmental temperature, with species in colder climates having significantly shorter bills. Patterns supporting Allen’s rule in relation to latitudinal or altitudinal distribution held within all groups except the finches. Evidence for a direct association with temperature was found within four groups (parrots, galliforms, penguins, and gulls). Support for Allen’s rule in leg elements was weaker, suggesting that bird bills may be more susceptible to thermoregulatory constraints generally. Our results provide the strongest comparative support yet published for Allen’s rule and demonstrate that thermoregulation has been an important factor in shaping the evolution of bird bills.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Variable compression ratio enables an engine to achieve increased efficiency at part loads, where the majority of driving occurs, without sacrificing full load power requirements or increasing the risk of engine knock. Although over 100 patents and patent applications exist none of these systems has been commercialized yet due to issues related to feasibility, cost and frictional loss. A new approach of a self controlling variable compression ratio connecting rod is presented that does not need a friction intensive external activation and that could even be retrofitted. The potential in fuel consumption and exhaust emission reduction as well as increased power and torque output for this concept has been verified in combustion simulations utilizing the latest research results related to the dynamic heat transfer in the combustion chamber from Professor Kleinschmidt from the University of Siegen, Germany. The self controlling variable compression ratio connecting rod allows the con rod to compress at high load conditions thereby increasing cylinder volume to alleviate combustion pressures and temperatures and therefore limit knock onset. The biggest efficiency gains can be achieved at medium load where the reduction of heat loss during the compression of the connecting rod plays a major role additional to the well known efficiency gains of an increased compression ratio. The combustion simulation results shows fuel consumption can be reduced by between 3% and 5% during part load and wide open throttle operation at various engine speeds. Emissions are also reduced significantly; particularly NOx and CO emissions were reduced by up to 35%.The self controlling variable compression ratio connecting rod allows the con rod to compress at high load conditions thereby increasing cylinder volume to alleviate combustion pressures and temperatures and therefore limit knock onset. The biggest efficiency gains can be achieved at medium load where the reduction of heat loss during the compression of the connecting rod plays a major role additional to the well known efficiency gains of an increased compression ratio.The combustion simulation results shows fuel consumption can be reduced by between 3% and 5% during part load and wide open throttle operation at various engine speeds. Emissions are also reduced significantly; particularly NOx and CO emissions were reduced by up to 35%.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

O calor, no ambiente onde o ser humano vive ou trabalha, atribui-se a: -fatores físicos: relação entre temperatura, radiação, umidade e movimento do ar; fatores humanos: o ser humano atua como fonte de energia através de seu metabolismo e atividade física. o calor caracterizado por um determinado meio ambiente é o resultado da atuação de diferentes variáveis, tais como: sistema de construção, situação geográfica do ambiente físico, climatização artificial, etc.; idade, sexo, capacidade física, estado de aclimatação, vestuário, tipo, carga e regime de trabalho, etc. A partir do momento em que o indivíduo for introduzido num determinado meio ambiente térmico, todos estes fatores vão influenciar a transmissão de calor entre ele e o ambiente. Na pretensão de haver equilíbrio térmico no meio ambiente quente, constata-se a necessidade de providenciar medidas de proteção a nível do sujeito e do ambiente, para que prevaleçam situações ambientais "confortáveis", ou pelo menos, "tolerantes". Desse modo, através da: definição das condições térmicas tolerantes e de conforto, parte-se para projetar meios ambientes de trabalho, que tornem praticáveis um isolamento térmico do calor exterior, assim como a perda de calor de dentro para fora. Atuando-se sobre variáveis individuais e ambientais estaremos incidindo diretamente sobre os meios de transmissão, procurando-se diminuir a quantidade de calor que o organismo produz e/ou recebe e aumentar a possibilidade de dissipá-lo.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

The Caatinga is the predominant vegetation type in semi-arid region of Brazil, where many inhabitants depend on hunting and gathering for survival, obtaining resources for: food and feed, folk medicine, timber production, etc. It‟s the dry ecosystem with highest population density in the world. The early stages of development are the most critical during the life cycle of a flowering plant and they‟re primordial to its establishment in environments exposed to water stress. Information about adjustments to the growth of the species, correlated with their studies of distribution in Seridó oriental potiguar, are an important ecological and economic standpoint, because they provide subsidies for the development of cultivation techniques, to programs of sustainable use and recovery of degraded areas. This thesis aimed to study the initial growth and foliar morphology in plants like Enterolobium contortisiliquum (Vell.) Morong. (tamboril) and Erythrina velutina Mart. ex Benth (mulungu), species of occurrence in the Caatinga, under water stress. After sowing and emergency, the seedlings were exposed to three water regimes: 450 (control), 225 (moderate stress) and 112.5 (severe stress) mm of water slide for 40 days. Seeding occurred in bags of 5 kg and after the establishment of seedlings thinning was carried out leaving a plantlet per bag. At the beginning the waterings occurred daily with distilled water, passing to be on alternate days after thinning. Twenty and forty days after the thinning seedlings collections were held to be done analysis of growth and biomass partition. When compared to the control group, the treatments with water stress showed reduction in the growth of the aerial part, growth of the greater root, number of leaves and leaflets, dry leaf area and total phytomass in both species, but in general, this effect was most marked for E. velutina. Regarding the partition of biomass, there were few changes throughout the experiment. Morphological changes in the leaves as a function of stress were not significant, however, there was a trend, in both species, to produce narrower leaves, that facilitate heat loss to the environment. It has not been possible to establish a positive relationship between inhibition of growth and distribution of species, whereas E. velutina is a species of most common occurrence in Seridó oriental potiguar. In this way, other aspects should be taken into account when studying the adaptation of species the dry environments, such as salinity, presence of heavy metals, wind speed, etc