988 resultados para semi-parametric estimation
Resumo:
The Remez penalty and smoothing algorithm (RPSALG) is a unified framework for penalty and smoothing methods for solving min-max convex semi-infinite programing problems, whose convergence was analyzed in a previous paper of three of the authors. In this paper we consider a partial implementation of RPSALG for solving ordinary convex semi-infinite programming problems. Each iteration of RPSALG involves two types of auxiliary optimization problems: the first one consists of obtaining an approximate solution of some discretized convex problem, while the second one requires to solve a non-convex optimization problem involving the parametric constraints as objective function with the parameter as variable. In this paper we tackle the latter problem with a variant of the cutting angle method called ECAM, a global optimization procedure for solving Lipschitz programming problems. We implement different variants of RPSALG which are compared with the unique publicly available SIP solver, NSIPS, on a battery of test problems.
Resumo:
We compare the Q parameter obtained from scalar, semi-analytical and full vector models for realistic transmission systems. One set of systems is operated in the linear regime, while another is using solitons at high peak power. We report in detail on the different results obtained for the same system using different models. Polarisation mode dispersion is also taken into account and a novel method to average Q parameters over several independent simulation runs is described. © 2006 Elsevier B.V. All rights reserved.
Resumo:
Most parametric software cost estimation models used today evolved in the late 70's and early 80's. At that time, the dominant software development techniques being used were the early 'structured methods'. Since then, several new systems development paradigms and methods have emerged, one being Jackson Systems Development (JSD). As current cost estimating methods do not take account of these developments, their non-universality means they cannot provide adequate estimates of effort and hence cost. In order to address these shortcomings two new estimation methods have been developed for JSD projects. One of these methods JSD-FPA, is a top-down estimating method, based on the existing MKII function point method. The other method, JSD-COCOMO, is a sizing technique which sizes a project, in terms of lines of code, from the process structure diagrams and thus provides an input to the traditional COCOMO method.The JSD-FPA method allows JSD projects in both the real-time and scientific application areas to be costed, as well as the commercial information systems applications to which FPA is usually applied. The method is based upon a three-dimensional view of a system specification as opposed to the largely data-oriented view traditionally used by FPA. The method uses counts of various attributes of a JSD specification to develop a metric which provides an indication of the size of the system to be developed. This size metric is then transformed into an estimate of effort by calculating past project productivity and utilising this figure to predict the effort and hence cost of a future project. The effort estimates produced were validated by comparing them against the effort figures for six actual projects.The JSD-COCOMO method uses counts of the levels in a process structure chart as the input to an empirically derived model which transforms them into an estimate of delivered source code instructions.
Resumo:
Distributed Brillouin sensing of strain and temperature works by making spatially resolved measurements of the position of the measurand-dependent extremum of the resonance curve associated with the scattering process in the weakly nonlinear regime. Typically, measurements of backscattered Stokes intensity (the dependent variable) are made at a number of predetermined fixed frequencies covering the design measurand range of the apparatus and combined to yield an estimate of the position of the extremum. The measurand can then be found because its relationship to the position of the extremum is assumed known. We present analytical expressions relating the relative error in the extremum position to experimental errors in the dependent variable. This is done for two cases: (i) a simple non-parametric estimate of the mean based on moments and (ii) the case in which a least squares technique is used to fit a Lorentzian to the data. The question of statistical bias in the estimates is discussed and in the second case we go further and present for the first time a general method by which the probability density function (PDF) of errors in the fitted parameters can be obtained in closed form in terms of the PDFs of the errors in the noisy data.
Resumo:
This article uses a semiparametric smooth coefficient model (SPSCM) to estimate TFP growth and its components (scale and technical change). The SPSCM is derived from a nonparametric specification of the production technology represented by an input distance function (IDF), using a growth formulation. The functional coefficients of the SPSCM come naturally from the model and are fully flexible in the sense that no functional form of the underlying production technology is used to derive them. Another advantage of the SPSCM is that it can estimate bias (input and scale) in technical change in a fully flexible manner. We also used a translog IDF framework to estimate TFP growth components. A panel of U.S. electricity generating plants for the period 1986–1998 is used for this purpose. Comparing estimated TFP growth results from both parametric and semiparametric models against the Divisia TFP growth, we conclude that the SPSCM performs the best in tracking the temporal behavior of TFP growth.
Resumo:
Estimation of economic relationships often requires imposition of constraints such as positivity or monotonicity on each observation. Methods to impose such constraints, however, vary depending upon the estimation technique employed. We describe a general methodology to impose (observation-specific) constraints for the class of linear regression estimators using a method known as constraint weighted bootstrapping. While this method has received attention in the nonparametric regression literature, we show how it can be applied for both parametric and nonparametric estimators. A benefit of this method is that imposing numerous constraints simultaneously can be performed seamlessly. We apply this method to Norwegian dairy farm data to estimate both unconstrained and constrained parametric and nonparametric models.
Resumo:
Distributed Brillouin sensing of strain and temperature works by making spatially resolved measurements of the position of the measurand-dependent extremum of the resonance curve associated with the scattering process in the weakly nonlinear regime. Typically, measurements of backscattered Stokes intensity (the dependent variable) are made at a number of predetermined fixed frequencies covering the design measurand range of the apparatus and combined to yield an estimate of the position of the extremum. The measurand can then be found because its relationship to the position of the extremum is assumed known. We present analytical expressions relating the relative error in the extremum position to experimental errors in the dependent variable. This is done for two cases: (i) a simple non-parametric estimate of the mean based on moments and (ii) the case in which a least squares technique is used to fit a Lorentzian to the data. The question of statistical bias in the estimates is discussed and in the second case we go further and present for the first time a general method by which the probability density function (PDF) of errors in the fitted parameters can be obtained in closed form in terms of the PDFs of the errors in the noisy data.
Resumo:
Growth of complexity and functional importance of integrated navigation systems (INS) leads to high losses at the equipment refusals. The paper is devoted to the INS diagnosis system development, allowing identifying the cause of malfunction. The proposed solutions permit taking into account any changes in sensors dynamic and accuracy characteristics by means of the appropriate error models coefficients. Under actual conditions of INS operation, the determination of current values of the sensor models and estimation filter parameters rely on identification procedures. The results of full-scale experiments are given, which corroborate the expediency of INS error models parametric identification in bench test process.
Resumo:
Limited literature regarding parameter estimation of dynamic systems has been identified as the central-most reason for not having parametric bounds in chaotic time series. However, literature suggests that a chaotic system displays a sensitive dependence on initial conditions, and our study reveals that the behavior of chaotic system: is also sensitive to changes in parameter values. Therefore, parameter estimation technique could make it possible to establish parametric bounds on a nonlinear dynamic system underlying a given time series, which in turn can improve predictability. By extracting the relationship between parametric bounds and predictability, we implemented chaos-based models for improving prediction in time series. ^ This study describes work done to establish bounds on a set of unknown parameters. Our research results reveal that by establishing parametric bounds, it is possible to improve the predictability of any time series, although the dynamics or the mathematical model of that series is not known apriori. In our attempt to improve the predictability of various time series, we have established the bounds for a set of unknown parameters. These are: (i) the embedding dimension to unfold a set of observation in the phase space, (ii) the time delay to use for a series, (iii) the number of neighborhood points to use for avoiding detection of false neighborhood and, (iv) the local polynomial to build numerical interpolation functions from one region to another. Using these bounds, we are able to get better predictability in chaotic time series than previously reported. In addition, the developments of this dissertation can establish a theoretical framework to investigate predictability in time series from the system-dynamics point of view. ^ In closing, our procedure significantly reduces the computer resource usage, as the search method is refined and efficient. Finally, the uniqueness of our method lies in its ability to extract chaotic dynamics inherent in non-linear time series by observing its values. ^
Resumo:
Accurate knowledge of the time since death, or postmortem interval (PMI), has enormous legal, criminological, and psychological impact. In this study, an investigation was made to determine whether the relationship between the degradation of the human cardiac structure protein Cardiac Troponin T and PMI could be used as an indicator of time since death, thus providing a rapid, high resolution, sensitive, and automated methodology for the determination of PMI. ^ The use of Cardiac Troponin T (cTnT), a protein found in heart tissue, as a selective marker for cardiac muscle damage has shown great promise in the determination of PMI. An optimized conventional immunoassay method was developed to quantify intact and fragmented cTnT. A small sample of cardiac tissue, which is less affected than other tissues by external factors, was taken, homogenized, extracted with magnetic microparticles, separated by SDS-PAGE, and visualized with Western blot by probing with monoclonal antibody against cTnT. This step was followed by labeling and available scanners. This conventional immunoassay provides a proper detection and quantitation of cTnT protein in cardiac tissue as a complex matrix; however, this method does not provide the analyst with immediate results. Therefore, a competitive separation method using capillary electrophoresis with laser-induced fluorescence (CE-LIF) was developed to study the interaction between human cTnT protein and monoclonal anti-TroponinT antibody. ^ Analysis of the results revealed a linear relationship between the percent of degraded cTnT and the log of the PMI, indicating that intact cTnT could be detected in human heart tissue up to 10 days postmortem at room temperature and beyond two weeks at 4C. The data presented demonstrates that this technique can provide an extended time range during which PMI can be more accurately estimated as compared to currently used methods. The data demonstrates that this technique represents a major advance in time of death determination through a fast and reliable, semi-quantitative measurement of a biochemical marker from an organ protected from outside factors. ^
Resumo:
Lutein is a principal constituent of the human macular pigment. This study is composed of two projects. The first studies the conformational geometries of lutein and its potential adaptability in biological systems. The second is a study of the response of human subjects to lutein supplements. Using semi-empirical parametric method 3 (PM3) and density functional theory with the B3LYP/6-31G* basis set, the relative energies of s- cis conformers of lutein were determined. All 512 s-cis conformers were calculated with PM3. A smaller, representative group was also studied using density functional theory. PM3 results were correlated systematically to B3LYP values and this enables the results to be calibrated. The relative energies of the conformers range from 1-30 kcal/mole, and many are dynamically accessible at normal temperatures. Four commercial formulations containing lutein were studied. The serum and macular pigment (MP) responses of human subjects to these lutein supplements with doses of 9 or 20 mg/day were measured, relative to a placebo, over a six month period. In each instance, lutein levels in serum increased and correlated with MP increases. The results demonstrate that responses are significantly dependent upon formulation and that components other than lutein have an important influence serum response.
Resumo:
Quantile regression (QR) was first introduced by Roger Koenker and Gilbert Bassett in 1978. It is robust to outliers which affect least squares estimator on a large scale in linear regression. Instead of modeling mean of the response, QR provides an alternative way to model the relationship between quantiles of the response and covariates. Therefore, QR can be widely used to solve problems in econometrics, environmental sciences and health sciences. Sample size is an important factor in the planning stage of experimental design and observational studies. In ordinary linear regression, sample size may be determined based on either precision analysis or power analysis with closed form formulas. There are also methods that calculate sample size based on precision analysis for QR like C.Jennen-Steinmetz and S.Wellek (2005). A method to estimate sample size for QR based on power analysis was proposed by Shao and Wang (2009). In this paper, a new method is proposed to calculate sample size based on power analysis under hypothesis test of covariate effects. Even though error distribution assumption is not necessary for QR analysis itself, researchers have to make assumptions of error distribution and covariate structure in the planning stage of a study to obtain a reasonable estimate of sample size. In this project, both parametric and nonparametric methods are provided to estimate error distribution. Since the method proposed can be implemented in R, user is able to choose either parametric distribution or nonparametric kernel density estimation for error distribution. User also needs to specify the covariate structure and effect size to carry out sample size and power calculation. The performance of the method proposed is further evaluated using numerical simulation. The results suggest that the sample sizes obtained from our method provide empirical powers that are closed to the nominal power level, for example, 80%.
Resumo:
The spouted bed was widely used due to its good mixing of particles and effective phase transferability between the gas and solid phase. In this paper, the transportation process of particles in a 3D spouted bed was studied using the Computational Particle Fluid Dynamics (CPFD) numerical method. Experiments were conducted to verify the validity of the simulation results. Distributions of the pressure, velocities and particle concentration of transportation devices were investigated. The motion state and characteristics of multiphase flows in the transportation device were demonstrated under various operating conditions. The results showed that a good consistency was obtained between the simulated results and the experimental results. The motion characteristics of the gas-solid two-phase flow in the device was effectively predicted, which could assist the optimal operating condition estimation for the spouted transportation process.
Resumo:
Les méthodes classiques d’analyse de survie notamment la méthode non paramétrique de Kaplan et Meier (1958) supposent l’indépendance entre les variables d’intérêt et de censure. Mais, cette hypothèse d’indépendance n’étant pas toujours soutenable, plusieurs auteurs ont élaboré des méthodes pour prendre en compte la dépendance. La plupart de ces méthodes émettent des hypothèses sur cette dépendance. Dans ce mémoire, nous avons proposé une méthode d’estimation de la dépendance en présence de censure dépendante qui utilise le copula-graphic estimator pour les copules archimédiennes (Rivest etWells, 2001) et suppose la connaissance de la distribution de la variable de censure. Nous avons ensuite étudié la consistance de cet estimateur à travers des simulations avant de l’appliquer sur un jeu de données réelles.
Resumo:
Dissertação (mestrado)—Universidade de Brasília, Faculdade de Tecnologia, Departamento de Engenharia Civil e Ambiental, 2015.