997 resultados para seismic data
Resumo:
Ambient seismic noise has traditionally been considered as an unwanted perturbation in seismic data acquisition that "contaminates" the clean recording of earthquakes. Over the last decade, however, it has been demonstrated that consistent information about the subsurface structure can be extracted from cross-correlation of ambient seismic noise. In this context, the rules are reversed: the ambient seismic noise becomes the desired seismic signal, while earthquakes become the unwanted perturbation that needs to be removed. At periods lower than 30 s, the spectrum of ambient seismic noise is dominated by microseism, which originates from distant atmospheric perturbations over the oceans. The microsseism is the most continuous seismic signal and can be classified as primary – when observed in the range 10-20 s – and secondary – when observed in the range 5-10 s. The Green‘s function of the propagating medium between two receivers (seismic stations) can be reconstructed by cross-correlating seismic noise simultaneously recorded at the receivers. The reconstruction of the Green‘s function is generally proportional to the surface-wave portion of the seismic wavefield, as microsseismic energy travels mostly as surface-waves. In this work, 194 Green‘s functions obtained from stacking of one month of daily cross-correlations of ambient seismic noise recorded in the vertical component of several pairs of broadband seismic stations in Northeast Brazil are presented. The daily cross-correlations were stacked using a timefrequency, phase-weighted scheme that enhances weak coherent signals by reducing incoherent noise. The cross-correlations show that, as expected, the emerged signal is dominated by Rayleigh waves, with dispersion velocities being reliably measured for periods ranging between 5 and 20 s. Both permanent stations from a monitoring seismic network and temporary stations from past passive experiments in the region are considered, resulting in a combined network of 33 stations separated by distances between 60 and 1311 km, approximately. The Rayleigh-wave, dispersion velocity measurements are then used to develop tomographic images of group velocity variation for the Borborema Province of Northeast Brazil. The tomographic maps allow to satisfactorily map buried structural features in the region. At short periods (~5 s) the images reflect shallow crustal structure, clearly delineating intra-continental and marginal sedimentary basins, as well as portions of important shear zones traversing the Borborema Province. At longer periods (10 – 20 s) the images are sensitive to deeper structure in the upper crust, and most of the shallower anomalies fade away. Interestingly, some of them do persist. The deep anomalies do not correlate with either the location of Cenozoic volcanism and uplift - which marked the evolution of the Borborema Province in the Cenozoic - or available maps of surface heat-flow, and the origin of the deep anomalies remains enigmatic.
Resumo:
The Borborema Province, located in northeastern Brazil, has a basement of Precambrian age and a tectonic framework structured at the Neoproterozoic (740-560 Ma). After separation between South America and Africa during the Mesozoic, a rift system was formed, giving rise to a number of marginal and inland basins in the Province. After continental breakup, episodes of volcanism and uplift characterized the evolution of the Province. Plateau uplift was initially related to magmatic underplating of mafic material at the base of the crust, perhaps related to the generation of young continental plugs (45-7 Ma) along the Macau-Queimadas Alignment (MQA), due to a small-scale convection at the continental edge. The goal of this study is to investigate the causes of intra-plate uplift and its relationship to MQA volcanism, by using broadband seismology and integrating our results with independent geophysical and geological studies in the Borborema Province. The investigation of the deep structure of the Province with broadband seismic data includes receiver functions and surface-wave dispersion tomography. Both the receiver functions and surface-wave dispersion tomography are methods that use teleseismic events and allow to develop estimates of crustal parameters such as crustal thickness, Vp/Vs ratio, and S-velocity structure. The seismograms used for the receiver function work were obtained from 52 stations in Northeast Brazil: 16 broadband stations from the RSISNE network (Rede Sismográfica do Nordeste do Brasil), and 21 short-period and 6 broadband stations from the INCT-ET network (Instituto Nacional de Ciência e Tecnologia – Estudos Tectônicos). These results add signifi- cantly to previous datasets collected at individual stations in the Province, which include station RCBR (GSN - Global Seismic Network), stations CAUB and AGBL (Brazilian Lithosphere Seismic Project IAG/USP), and 6 other broadband stations that were part of the Projeto Milênio - Estudos geofísicos e tectônicos na Província Borborema/CNPq. For the surface-wave vii tomography, seismograms recorde at 22 broadband stations were utilized: 16 broadband stations from the RSISNE network and 6 broadband stations from the Milênio project. The new constraints developed in this work include: (i) estimates of crustal thickness and bulk Vp/Vs ratio for each station using receiver functions; (ii) new measurements of surfassewave group velocity, which were integrated to existing measurementes from a continental-scale tomography for South America, and (iii) S-wave velocity models (1D) at various locations in the Borborema Province, developed through the simultaneous inversion of receiver functions and surface-wave dispersion velocities. The results display S-wave velocity structure down to the base of the crust that are consistent with the presence of a 5-7.5 km thick mafic layer. The mafic layer was observed only in the southern portion of the Plateau and absent in its northern portion. Another important observation is that our models divide the plateau into a region of thin crust (northern Plateau) and a region of thick crust (southern Plateau), confirming results from independent refraction surveys and receiver function analyses. Existing models of plateau uplift, nonetheless, cannot explain all the new observations. It is proposed that during the Brazilian orogeny a layer of preexisting mafic material was delaminated, as a whole or in part, from the original Brasiliano crust. Partial delamination would have happened in the southern portion of the plateau, where independent studies found evidence of a more resistant rheology. During Mesozoic rifting, thinning of the crust around the southern Plateau would have formed the marginal basins and the Sertaneja depression, which would have included the northern part of the Plateau. In the Cenozoic, uplift of the northern Plateau would have occurred, resulting in a northern Plateau without mafic material at the base of the crust and a southern Plateau with partially delaminated mafic layer.
Resumo:
In the oil prospection research seismic data are usually irregular and sparsely sampled along the spatial coordinates due to obstacles in placement of geophones. Fourier methods provide a way to make the regularization of seismic data which are efficient if the input data is sampled on a regular grid. However, when these methods are applied to a set of irregularly sampled data, the orthogonality among the Fourier components is broken and the energy of a Fourier component may "leak" to other components, a phenomenon called "spectral leakage". The objective of this research is to study the spectral representation of irregularly sampled data method. In particular, it will be presented the basic structure of representation of the NDFT (nonuniform discrete Fourier transform), study their properties and demonstrate its potential in the processing of the seismic signal. In this way we study the FFT (fast Fourier transform) and the NFFT (nonuniform fast Fourier transform) which rapidly calculate the DFT (discrete Fourier transform) and NDFT. We compare the recovery of the signal using the FFT, DFT and NFFT. We approach the interpolation of seismic trace using the ALFT (antileakage Fourier transform) to overcome the problem of spectral leakage caused by uneven sampling. Applications to synthetic and real data showed that ALFT method works well on complex geology seismic data and suffers little with irregular spatial sampling of the data and edge effects, in addition it is robust and stable with noisy data. However, it is not as efficient as the FFT and its reconstruction is not as good in the case of irregular filling with large holes in the acquisition.
Resumo:
In the oil prospection research seismic data are usually irregular and sparsely sampled along the spatial coordinates due to obstacles in placement of geophones. Fourier methods provide a way to make the regularization of seismic data which are efficient if the input data is sampled on a regular grid. However, when these methods are applied to a set of irregularly sampled data, the orthogonality among the Fourier components is broken and the energy of a Fourier component may "leak" to other components, a phenomenon called "spectral leakage". The objective of this research is to study the spectral representation of irregularly sampled data method. In particular, it will be presented the basic structure of representation of the NDFT (nonuniform discrete Fourier transform), study their properties and demonstrate its potential in the processing of the seismic signal. In this way we study the FFT (fast Fourier transform) and the NFFT (nonuniform fast Fourier transform) which rapidly calculate the DFT (discrete Fourier transform) and NDFT. We compare the recovery of the signal using the FFT, DFT and NFFT. We approach the interpolation of seismic trace using the ALFT (antileakage Fourier transform) to overcome the problem of spectral leakage caused by uneven sampling. Applications to synthetic and real data showed that ALFT method works well on complex geology seismic data and suffers little with irregular spatial sampling of the data and edge effects, in addition it is robust and stable with noisy data. However, it is not as efficient as the FFT and its reconstruction is not as good in the case of irregular filling with large holes in the acquisition.
Resumo:
The objective of this study was to characterize the structural-geophysical expression of the Transbrasiliano Lineament (TBL) in the east-central portion of the Parnaíba Basin. The TBL corresponds to a major Neoproterozoic NE-trending shear zone related to the Brasiliano orogenic cycle, with dextral strike-slip kinematics, underlying (but also laterally exposed in the NE and SW basin edges) the sedimentary section of the Parnaíba Basin. In this study, the interpretation of gravity and magnetic anomaly maps is consistent with the TBL kinematics, the signature of the geophysical anomalies corresponding to the high (plastic behaviour) and subsequent declining temperature (ductile to brittle behaviour) stages during Brasiliano and late Brasiliano times. The pattern of residual gravity anomalies is compatible with an S-C dextral pair shaping the geological bodies of an heterogeneous basement, such as slices of gneisses and granulites (positive anomalies), granitic and low-medium grade metasedimentary rocks (negative anomalies). Such anomalies curvilinear trends, ranging from NNE (interpreted as S surfaces) to NE (C surfaces), correspond to flattening surfaces (S), while the NE rectilinear trend must represent a C band. The narrower magnetic anomalies also display NNE to NE (S surfaces) trends and should correspond to similar (although narrower and more discontinuous) sources in the equivalent anomaly patterns. Pre-Silurian pull-apart style grabens may contribute to the NE negative gravimetric anomalies, although this interpretation demands control by seismic data analysis. On the other hand, the curvilinear anomalies associated to contractional trends are incompatible with their interpretation as pre-Silurian graben, in both maps. In the (reduced to the pole) magnetic anomalies map, most of these are again associated to low-temperature shear zones (C planes) and faults, juxtaposing distinct blocks in terms of magnetic properties, or eventually filled with basic bodies. It is also possible that some isolated magnetic anomalies correspond to igneous bodies of late-Brasiliano or Mesozoic age. The basement late discontinuities pattern can be interpreted in analogy to the Riedel fractures model, with steep dipping surfaces and a sub-horizontal movement section. This study also explored 2D gravity modeling controlled by the interpretation of a dip seismic line as regards to the Transbrasiliano Lineament. The rock section equivalent to the Jaibaras Group occupying a graben structure (as identified in the seismic line) corresponds to a discrete negative anomaly superimposed to a gravimetric high, once again indicating a stronger influence of older crystalline basement rocks as gravimetric sources, mainly reflecting the heterogeneities and anisotropies generated at high temperature conditions and their subsequent cooling along the TBL, during the Brasiliano cycle.
Resumo:
The objective of this study was to characterize the structural-geophysical expression of the Transbrasiliano Lineament (TBL) in the east-central portion of the Parnaíba Basin. The TBL corresponds to a major Neoproterozoic NE-trending shear zone related to the Brasiliano orogenic cycle, with dextral strike-slip kinematics, underlying (but also laterally exposed in the NE and SW basin edges) the sedimentary section of the Parnaíba Basin. In this study, the interpretation of gravity and magnetic anomaly maps is consistent with the TBL kinematics, the signature of the geophysical anomalies corresponding to the high (plastic behaviour) and subsequent declining temperature (ductile to brittle behaviour) stages during Brasiliano and late Brasiliano times. The pattern of residual gravity anomalies is compatible with an S-C dextral pair shaping the geological bodies of an heterogeneous basement, such as slices of gneisses and granulites (positive anomalies), granitic and low-medium grade metasedimentary rocks (negative anomalies). Such anomalies curvilinear trends, ranging from NNE (interpreted as S surfaces) to NE (C surfaces), correspond to flattening surfaces (S), while the NE rectilinear trend must represent a C band. The narrower magnetic anomalies also display NNE to NE (S surfaces) trends and should correspond to similar (although narrower and more discontinuous) sources in the equivalent anomaly patterns. Pre-Silurian pull-apart style grabens may contribute to the NE negative gravimetric anomalies, although this interpretation demands control by seismic data analysis. On the other hand, the curvilinear anomalies associated to contractional trends are incompatible with their interpretation as pre-Silurian graben, in both maps. In the (reduced to the pole) magnetic anomalies map, most of these are again associated to low-temperature shear zones (C planes) and faults, juxtaposing distinct blocks in terms of magnetic properties, or eventually filled with basic bodies. It is also possible that some isolated magnetic anomalies correspond to igneous bodies of late-Brasiliano or Mesozoic age. The basement late discontinuities pattern can be interpreted in analogy to the Riedel fractures model, with steep dipping surfaces and a sub-horizontal movement section. This study also explored 2D gravity modeling controlled by the interpretation of a dip seismic line as regards to the Transbrasiliano Lineament. The rock section equivalent to the Jaibaras Group occupying a graben structure (as identified in the seismic line) corresponds to a discrete negative anomaly superimposed to a gravimetric high, once again indicating a stronger influence of older crystalline basement rocks as gravimetric sources, mainly reflecting the heterogeneities and anisotropies generated at high temperature conditions and their subsequent cooling along the TBL, during the Brasiliano cycle.
Resumo:
Integrated interpretation of multi-beam bathymetric, sediment-penetrating acoustic (PARASOUND) and seismic data show a multiple slope failure on the northern European continental margin, north of Spitsbergen. The first slide event occurred during MIS 3 around 30 cal. ka BP and was characterised by highly dynamic and rapid evacuation of ca. 1250 km**3 of sediment from the lower to the upper part of the continental slope. During this event, headwalls up to 1600 m high were created and ca. 1150 km**3 material from hemi-pelagic sediments and from the lower pre-existing trough mouth fan has been entrained and transported into the semi-enclosed Sophia Basin. This megaslide event was followed by a secondary evacuation of material to the Nansen Basin by funnelling of the debris through the channel between Polarstern Seamount and the adjacent continental slope. The main slide debris is overlain by a set of fining-upward sequences as evidence for the associated suspension cloud and following minor failure events. Subsequent adjustment of the eastern headwalls led to failure of rather soft sediments and creation of smaller debris flows that followed the main slide surficial topography. Discharge of the Hinlopen ice stream during the Last Glacial Maximum and the following deglaciation draped the central headwalls and created a fan deposit of glacigenic debris flows.
Resumo:
Late Neogene stratigraphy of southern Victoria Land Basin is revealed in coastal and offshore drill cores and a network of seismic data in McMurdo Sound, Antarctica. These data preserve a record of ice sheet response to global climate variability and progressive cooling through the past 5 million years. Application of a composite standard age model for diatom event stratigraphy to the McMurdo Sound drill cores provides an internally precise mechanism to correlate stratigraphic data and derive an event history for the basin. These marine records are indirectly compared to data obtained from geological outcrop in the Transantarctic Mountains to produce an integrated history of Antarctic Ice Sheet response to climate variability from the early Pliocene to Recent. Four distinct chronostratigraphic intervals reflect stages and steps in a transition from a relatively warm early Pliocene Antarctic coastal climate to modern cold polar conditions. Several of these stages and steps correlate with global events identified via geochemical proxy data recovered from deep ocean cores in mid to low latitudes. These correlations allow us to consider linkages between the high southern latitudes and tropical regions and establish a temporal framework to examine leads and lags in the climate system through the late Neogene and Quaternary. The relative influence of climate-tectonic feedbacks is discussed in light of glacial erosion and isostatic rebound that also influence the history along the Southern Victoria Land coastal margin.
Resumo:
Circum-Antarctic sediment thickness grids provide constraints for basin evolution and paleotopographic reconstructions, which are important for paleo-ice sheet formation histories. By compiling old and new seismic data, we identify sequences representing pre-glacial, transitional and full glacial deposition processes along the Pacific margin of West Antarctica. The pre-glacial sediment grid depicts 1.3 to 4.0 km thick depocenters, relatively evenly distributed along the margin. The depocenters change markedly in the transitional phase at, or after, the Eocene/Oligocene boundary, when the first major ice sheets reached the shelf. Full glacial sequences, starting in the middle Miocene, indicate new depocenter formation North of the Amundsen Sea Embayment and localized eastward shifts in the Bellingshausen Sea and Antarctic Peninsula basins. Using present-day drainage paths and source areas on the continent, our calculations indicate an estimated observed total sedimentary volume of ~10 x 10**6 km**3 was eroded from West Antarctica since the separation of New Zealand in the Late Cretaceous. Of this 4.9 x 10**6 km**3 predates the onset of glaciation and need to be considered for a paleotopography reconstruction of 34 Ma. Whereas 5.1 x 10**6 km**3 postdate the onset of glaciation, of which 2.5 x 10**6 km**3 were deposited in post mid-Miocene full glacial conditions.
Resumo:
The deep sea sedimentary record is an archive of the pre-glacial to glacial development of Antarctica and changes in climate, tectonics and ocean circulation. Identification of the pre-glacial, transitional and full glacial components in the sedimentary record is necessary for ice sheet reconstruction and to build circum-Antarctic sediment thickness grids for past topography and bathymetry reconstructions, which constrain paleoclimate models. A ~3300 km long Weddell Sea to Scotia Sea transect consisting of multichannel seismic reflection data from various organisations, were used to interpret new horizons to define the initial basin-wide seismostratigraphy and to identify the pre-glacial to glacial components. We mapped seven main units of which three are in the inferred Cretaceous-Paleocene pre-glacial regime, one in the Eocene-Oligocene transitional regime and three units in the Miocene-Pleistocene full glacial climate regime. Sparse borehole data from ODP leg 113 and SHALDRIL constrain the ages of the upper three units. Compiled seafloor spreading magnetic anomalies constrain the basement ages and the hypothetical age model. In many cases, the new horizons and stratigraphy contradict the interpretations in local studies. Each seismic sedimentary unit and its associated base horizon are continuous and traceable for the entire transect length, but reflect a lateral change in age whilst representing the same deposition process. The up to 1240 m thick pre-glacial seismic units form a mound in the central Weddell Sea basin and, in conjunction with the eroded flank geometry, support the interpretation of a Cretaceous proto-Weddell Gyre. The base reflector of the transitional seismic unit, which marks the initial ice sheet advances to the outer shelf, has a lateral model age of 26.6-15.5 Ma from southeast to northwest. The Pliocene-Pleistocene glacial deposits reveals lower sedimentations rates, indicating a reduced sediment supply. Sedimentation rates for the pre-glacial, transitional and full glacial components are highest around the Antarctic Peninsula, indicating higher erosion and sediment supply of a younger basement. We interpret an Eocene East Antarctic Ice Sheet expansion, Oligocene grounding of the West Antarctic Ice Sheet and Early Miocene grounding of the Antarctic Peninsula Ice Sheet.
Resumo:
Glauconite is generally agreed to be a reliable indicator of low sedimentation rate, but little systematic work has been done to specify the role of glauconite in a sequence-stratigraphic framework. Ocean Drilling Program Leg 174A recovered a good record of late Tertiary sediments along the shelf edge of the New Jersey US Atlantic margin, and glauconite was present in many intervals of the cores, sometimes in vertical proximity to sequence boundaries. Leg 174A glauconite was analyzed with binocular microscope, XRD and SEM to determine the percent of potassium and degree of maturity in order to relate occurrence to depositional environment. Seismic data were used to locate sequence boundaries, and percent glauconite was visually estimated. Glauconite samples from Site 1073 were found to have formed within a lowstand systems tract (LST), and as part of a distal condensed section (CS) within a transgressive systems tract (TST). These results are comparable to those from nearby Site 903 of Leg 150, which indicate a similar depositional setting for glauconite. Glauconites at shelf Sites 1071 and 1072 likely formed in the TST as well. Onshore, glauconite occurs mainly in transgressive systems tracts. The Miocene appears to be the upper limit of glauconite formation onshore. As the magnitude of sea-level change decreased, present onshore locations became too nearshore to maintain sediment-free environments, and the zone of glauconite deposition moved seaward. The same process did not occur offshore until the Plio-Pleistocene. Low subsidence-rate margins such as the US Atlantic are subject more to the variations of sea-level than to changes in sediment supply, tectonics, or other factors influencing their depositional patterns. Although glauconite occurrence is widespread in the stratigraphic record, this study demonstrates that for low subsidence-rate margins, primary deposition of glauconite is largely restricted to the TST.
Resumo:
Através do processamento de dados sísmicos convertem-se registos de campo em secções sísmicas com significado geológico, que revelam informações e ajudam a delinear as camadas geológicas do subsolo e identificar estruturas soterradas. Portanto, a interpretação dos dados sísmicos só é boa se o processamento também o for. Este trabalho é resultado de um estágio curricular na empresa de prospecção geofísica GeoSurveys, que consistiu principalmente em processar 18 linhas de dados de sísmica de reflexão multicanal de alta resolução adquiridas na ilha de Pulau Tekong em Singapura, que têm como finalidade investigação do solo da baia desta mesma ilha. Estes dados foram cedidos à GeoSurveys para fins académicos, caso em que se inclui esta dissertação. Para atingir os objectivos propostos que consistiam em avaliar o impacto das condições de operação na qualidade do sinal sísmico e interpretação das linhas, fez-se o processamento das linhas utilizando um fluxo processamento padrão utilizado na empresa, com recurso ao software Radex Pro. Este fluxo de processamento tem como mais-valia o método de correcções estáticas, o UHRS trim statics, além das técnicas habituais utilizadas para melhorar a resolução das secções sísmicas como é o caso da desconvolução, a atenuação de ruído através do stacking, correcções de NMO, e migração, entre outras técnicas. A interpretação das linhas sísmicas processadas foi feita no software Kingdom Suite (IHS), através da distinção da configuração interna dos reflectores em cada secção sísmica, estabelecendo deste modo as principais unidades sismo-estratigráficas e identificando as zonas de interface que delimitam os horizontes principais. Foi feito ainda um estudo geológico sumário da área de pesquisa e da evolução geodinâmica da região.
Resumo:
No âmbito de um projeto realizado para a Administração Portuária do Porto da Figueira da Foz, foram recolhidos dados geofísicos no offshore da costa da Figueira da Foz, utilizando um sistema combinado de sonar de varrimento lateral e de sísmica de alta resolução com o objetivo de compreender a distribuição de sedimentos ao longo do fundo marinho e assim entender melhor a sua origem. Os dados de varrimento lateral foram processados, analisados e representados em mosaicos recorrendo ao software integrado TRINTON Prespective. Foram colhidas 10 amostras de sedimentos de fundo que foram analisadas do ponto de vista granulométrico e que foram usadas para a calibração dos mosaicos do sonar de varrimento lateral de modo a produzir um mapa semi-quantitativo de classificação dos sedimentos de fundo. Os dados de reflexão sísmica foram processados e analisados através dos softwares SPW e RadExPro. Os mapas de sonar de varrimento lateral produzidos (mosaicos) mostram uma relação entre o tamanho de grão e composição dos depósitos de plataforma interna e os processos geológicos que ocorrem na zona costeira adjacente. Também se verifica uma relação entre a orientação da costa e a sua consequente exposição às ondas incidentes, e como isso afeta e altera a distribuição do tamanho grão. Neste contexto, a interpretação combinada dos mosaicos do sonar de varrimento lateral com os dados de granulometria e a batimetria dos sedimentos permitiram uma cartografia interpretativa detalhada da morfologia do mar, uma melhor compreensão do controlo da linha costeira na propagação das ondas e correntes e, por conseguinte, na transferência de sedimento no litoral. Os dados de sísmica permitem ainda verificar a espessura das várias camadas geológicas em profundidade.
Resumo:
The Southern Ischia canyon system has been investigated in detail through Multibeam bathymetry and Sparker seismic data and has been put in the geological framework of the deep sea depositional systems off the Campania region. The geological and geomorphological characteristics of the canyon system have been also compared with the characters of the Mediterranean submarine canyons and with the deep sea depositional systems of the Tyrrhenian sea. The Southern Ischia canyon system engraves a narrow continental shelf from Punta Imperatore to Punta San Pancrazio, being limited southwestwards from the relict volcanic edifice of the Ischia Bank. It consists of twenty-two drainage axes, whose planimetric trending has been reconstructed in a sketch morphological map realized through the geological interpretation of Multibeam bathymetry. While the eastern boundary of the canyon system is controlled by extensional tectonics, being limited by a NE-SW trending (anti-Apenninic) normal fault, its western boundary is controlled by volcanism, due to the growth of the Ischia volcanic bank. Submarine gravitational instabilities also acted in relationships to the canyon system, allowing for the individuation of large-scale creeping at the sea bottom and hummocky deposits already interpreted as debris avalanche deposits. Quaternary marine seismic sequences have been reconstructed through a densely spaced seismic grid recorded through a Sparker multitip seismic source, allowing for a detailed observation of steep erosional slopes occurring on the southern flank of the island and related deep sea depositional systems. Important implications of this study will regard the coastal monitoring and beach nourishment of the southern flank of the island, being involved by a strong erosion of marine and coastal systems.
Resumo:
The stratigraphic architecture of deep sea depositional systems has been discussed in detail. Some examples in Ischia and Stromboli volcanic islands (Southern Tyrrhenian sea, Italy) are here shown and discussed. The submarine slope and base of slope depositional systems represent a major component of marine and lacustrine basin fills, constituting primary targets for hydrocarbon exploration and development. The slope systems are characterized by seven seismic facies building blocks, including the turbiditic channel fills, the turbidite lobes, the sheet turbidites, the slide, slump and debris flow sheets, lobes and tongues, the fine-grained turbidite fills and sheets, the contourite drifts and finally, the hemipelagic drapes and fills. Sparker profiles offshore Ischia are presented. New seismo-stratigraphic evidence on buried volcanic structures and overlying Quaternary deposits of the eastern offshore of the Ischia Island are here discussed to highlight the implications on marine geophysics and volcanology. Regional seismic sections in the Ischia offshore across buried volcanic structures and debris avalanche and debris flow deposits are here presented and discussed. Deep sea depositional systems in the Ischia Island are well developed in correspondence to the Southern Ischia canyon system. The canyon system engraves a narrow continental shelf from Punta Imperatore to Punta San Pancrazio, being limited southwestwards from the relict volcanic edifice of the Ischia bank. While the eastern boundary of the canyon system is controlled by extensional tectonics, being limited from a NE-SW trending (counter-Apenninic) normal fault, its western boundary is controlled by volcanism, due to the growth of the Ischia volcanic bank. Submarine gravitational instabilities also acted in relationships to the canyon system, allowing for the individuation of large scale creeping at the sea bottom and hummocky deposits already interpreted as debris avalanche deposits. High resolution seismic data (Subbottom Chirp) coupled to high resolution Multibeam bathymetry collected in the frame of the Stromboli geophysical experiment aimed at recording seismic active data and tomography of the Stromboli Island are here presented. A new detailed swath bathymetry of Stromboli Island is here shown and discussed to reconstruct an up-to-date morpho-bathymetry and marine geology of the area, compared to volcanologic setting of the Aeolian volcanic complex. The Stromboli DEM gives information about the submerged structure of the volcano, particularly about the volcano-tectonic and gravitational processes involving the submarine flanks of the edifice. Several seismic units have been identified around the volcanic edifice and interpreted as volcanic acoustic basement pertaining to the volcano and overlying slide chaotic bodies emplaced during its complex volcano-tectonic evolution. They are related to the eruptive activity of Stromboli, mainly poliphasic and to regional geological processes involving the geology of the Aeolian Arc.