944 resultados para respiratory muscle training


Relevância:

40.00% 40.00%

Publicador:

Resumo:

The identification of microRNAs (miRNAs) has established new mechanisms that control skeletal muscle adaptation to exercise. The present study investigated the mRNA regulation of components of the miRNA biogenesis pathway (Drosha, Dicer and Exportin-5), muscle enriched miRNAs, (miR-1, -133a, -133b and -206), and several miRNAs dysregulated in muscle myopathies (miR-9, -23, -29, -31 and -181). Measurements were made in muscle biopsies from nine healthy untrained males at rest, 3 h following an acute bout of moderate-intensity endurance cycling and following 10 days of endurance training. Bioinformatics analysis was used to predict potential miRNA targets. In the 3 h period following the acute exercise bout, Drosha, Dicer and Exportin-5, as well as miR-1, -133a, -133-b and -181a were all increased. In contrast miR-9, -23a, -23b and -31 were decreased. Short-term training increased miR-1 and -29b, while miR-31 remained decreased. Negative correlations were observed between miR-9 and HDAC4 protein (r=-0.71; P= 0.04), miR-31 and HDAC4 protein (r =-0.87; P= 0.026) and miR-31 and NRF1 protein (r =-0.77; P= 0.01) 3 h following exercise. miR-31 binding to the HDAC4 and NRF1 3′ untranslated region (UTR) reduced luciferase reporter activity. Exercise rapidly and transiently regulates several miRNA species in muscle. Several of these miRNAs may be involved in the regulation of skeletal muscle regeneration, gene transcription and mitochondrial biogenesis. Identifying endurance exercise-mediated stress signals regulating skeletal muscle miRNAs, as well as validating their targets and regulatory pathways post exercise, will advance our understanding of their potential role/s in human health

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Reduced activation of exercise responsive signalling pathways have been reported in response to acute exercise after training; however little is known about the adaptive responses of the mitochondria. Accordingly, we investigated changes in mitochondrial gene expression and protein abundance in response to the same acute exercise before and after 10-d of intensive cycle training.

Nine untrained, healthy participants (mean±SD; VO2peak 44.1±17.6 ml/kg/min) performed a 60 min bout of cycling exercise at 164±18 W (72% of pre-training VO2peak). Muscle biopsies were obtained from the vastus lateralis muscle at rest, immediately and 3 h after exercise. The participants then underwent 10-d of cycle training which included four high-intensity interval training sessions (6×5 min; 90–100% VO2peak) and six prolonged moderate-intensity sessions (45–90 min; 75% VO2peak). Participants repeated the pre-training exercise trial at the same absolute work load (64% of pre-training VO2peak). Muscle PGC1-α mRNA expression was attenuated as it increased by 11- and 4- fold (P<0.001) after exercise pre- and post-training, respectively. PGC1-α protein expression increased 1.5 fold (P<0.05) in response to exercise pre-training with no further increases after the post-training exercise bout. RIP140 protein abundance was responsive to acute exercise only (P<0.01). COXIV mRNA (1.6 fold; P<0.01) and COXIV protein expression (1.5 fold; P<0.05) were increased by training but COXIV protein expression was decreased (20%; P<0.01) by acute exercise pre- and post-training.

These findings demonstrate that short-term intensified training promotes increased mitochondrial gene expression and protein abundance. Furthermore, acute indicators of exercise-induced mitochondrial adaptation appear to be blunted in response to exercise at the same absolute intensity following short-term training.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Training whilst under the effects of vascular occlusion has become increasingly popular due to the resultant muscle gain associated with this training technique. However, when exercising with the use of a tourniquet type device, it is possible for the pressure being applied to be inconsistent, due the constantly changing cross sectional area of the limb being occluded. This Paper describes the design of a device capable of causing vascular occlusion, but also being able to maintain a stable pressure required to create the blood flow restriction, this being able to be utilized in a sports science environment

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Evidence suggests that the cross-transfer of strength following unilateral training may be modulated by increased corticospinal excitability of the ipsilateral primary motor cortex, due to cross-activation. Anodal-tDCS (a-tDCS) has been shown to acutely increase corticospinal excitability and motor performance, which may enhance this process. Therefore, we sought to examine changes in neural activation and strength of the untrained limb following the application of a-tDCS during a single unilateral strength training session. Ten participants underwent three conditions in a randomized, double-blinded crossover design: (1) strength training + a-tDCS, (2) strength training + sham-tDCS and (3) a-tDCS alone. a-tDCS was applied for 20 min at 2 mA over the right motor cortex. Unilateral strength training of the right wrist involved 4 × 6 wrist extensions at 70 % of maximum. Outcome measures included maximal voluntary strength, corticospinal excitability, short-interval intracortical inhibition, and cross-activation. We observed a significant increase in strength of the untrained wrist (5.27 %), a decrease in short-interval intracortical inhibition (−13.49 %), and an increase in cross-activation (15.71 %) when strength training was performed with a-tDCS, but not following strength training with sham-tDCS, or tDCS alone. Corticospinal excitability of the untrained wrist increased significantly following both strength training with a-tDCS (17.29 %), and a-tDCS alone (15.15 %), but not following strength training with sham-tDCS. These findings suggest that a single session of a-tDCS combined with unilateral strength training of the right limb increases maximal strength and cross-activation to the contralateral untrained limb.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Muscle fatty acid (FA) metabolism is impaired in obesity and insulin resistance, reflected by reduced rates of FA oxidation and accumulation of lipids. It has been suggested that interventions that increase FA oxidation may enhance insulin action by reducing these lipid pools. Here, we examined the effect of endurance training on rates of mitochondrial FA oxidation, the activity of carnitine palmitoyltransferase I (CPT I), and the lipid content in muscle of obese individuals and related these to measures of glucose tolerance. Nine obese subjects completed 8 wk of moderate-intensity endurance training, and muscle biopsies were obtained before and after training. Training significantly improved glucose tolerance, with a reduction in the area under the curve for glucose (P< 0.05) and insulin (P = 0.01) during an oral glucose tolerance test. CPT I activity increased 250% (P = 0.001) with training and became less sensitive to inhibition by malonyl-CoA. This was associated with an increase in mitochondrial FA oxidation (+120%, P < 0.001). Training had no effect on muscle triacylglycerol content; however, there was a trend for training to reduce both the total diacylglcyerol (DAG) content (−15%, P = 0.06) and the saturated DAG-FA species (−27%, P = 0.06). Training reduced both total ceramide content (−42%, P = 0.01) and the saturated ceramide species (−32%, P < 0.05). These findings suggest that the improved capacity for mitochondrial FA uptake and oxidation leads not only to a reduction in muscle lipid content but also a to change in the saturation status of lipids, which may, at least in part, provide a mechanism for the enhanced insulin action observed with endurance training in obese individuals.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

We determined the interaction of diet and exercise-training intensity on membrane phospholipid fatty acid (FA) composition in skeletal muscle from 36 female Sprague-Dawley rats. Animals were randomly divided into one of two dietary conditions: high-carbohydrate (64.0% carbohydrate by energy, n = 18) or high fat (78.1% fat by energy, n = 18). Rats in each diet condition were then allocated to one of three subgroups: control, which performed no exercise training; low-intensity (8 m/min) treadmill run training; or high-intensity (28 m/min) run training. All exercise-trained rats ran 1,000 m/session, 4 days/wk for 8 wk and were killed 48 h after the last training bout. Membrane phospholipids were extracted, and FA composition was determined in the red and white vastus lateralis muscles, Diet exerted a major influence on phospholipid FA composition, with the high-fat diet being associated with a significantly (P < 0.01) elevated ratio of n-6/n-3 FA for both red (2.7-3.2 vs. 1.0-1.1) and white vastus lateralis muscle (2.5-2.9 vs. 1.2). In contrast, alterations in FA composition as a result of either exercise-training protocol were only minor in comparison. We conclude that, under the present experimental conditions, a change in the macronutrient content of the diet was a more potent modulator of skeletal muscle membrane phospholipid FA composition compared with either low- or high-intensity treadmill exercise training.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Aim/hypothesis. We determined the effect of exercise training on insulin sensitivity and muscle lipids (triglyceride [TGm] and long-chain fatty acyl CoA [LCACoA] concentration) in patients with Type 2 diabetes. Methods. Seven patients with Type 2 diabetes and six healthy control subjects who were matched for age, BMI, % body fat and VO2peak participated in a 3 days per week training program for 8 weeks. Insulin sensitivity was determined pre- and post-training during a 120 min euglycaemic- hyperinsulinaemic clamp and muscle biopsies were obtained before and after each clamp. Oxidative enzyme activities [citrate synthase (CS), β-hydroxy-acyl- CoA (β-HAD)] and TGm were determined from basal muscle samples pre- and post training, while total LCACoA content was measured in samples obtained before and after insulin-stimulation, pre- and post training. Results. The training-induced increase in VO2peak (∼20%, p<0.01) was similar in both groups. Compared with control subjects, insulin sensitivity was lower in the diabetic patients before and after training (∼60%; p<0.05), but was increased to the same extent in both groups with training (∼30%; p<0.01). TGm was increased in patients with Type 2 diabetes (170%; p<0.05) before, but was normalized to levels observed in control subjects after training. Basal LCACoA content was similar between groups and was unaltered by training. Insulin-stimulation had no detectable effect on LCACoA content. CS and β-HAD activity were increased to the same extent in both groups in response to training (p<0.001). Conclusion/interpretation. We conclude that the enhanced insulin sensitivity observed after short-term exercise training was associated with a marked decrease in TGm content in patients with Type 2 diabetes. However, despite the normalization of TGm to levels observed in healthy individuals, insulin resistance was not completely reversed in the diabetic patients.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

1. The effect of a chronic programme of either low- or moderate-to-high-intensity treadmill running on the activation of the extracellular-signal regulated protein kinase (ERK1/2) and the p38 mitogen-activated protein kinase (MAPK) pathways was determined in rat muscle. 2. Sprague-Dawley rats were assigned to one of three groups: (i) sedentary (NT; n = 8); (ii) low-intensity training (8 m/min; LIT; n = 16); and (iii) moderate-to-high-intensity training (28 m/min; HIT;n = 16). The training regimens were planned so that animals covered the same distance and had similar glycogen utilization for both LIT and HIT exercise sessions. 3. A single bout of LIT or HIT following 8 weeks of training led to a twofold increase in the phosphorylation of ERK1/2 (P = 0.048) and a two- to threefold increase in p38 MAPK (P = 0.005). Extracellular signal-regulated kinase 1/2 phosphorylation in muscle sampled 48 h after the last exercise bout was similar to sedentary values, while p38 MAPK phosphorylation was 70-80% lower than sedentary. One bout of LIT or HIT increased total ERK1/2 and p38 MAPK expression, with the magnitude of this increase being independent of prior exercise intensity or duration. Extracellular signal-regulated kinase 1/2 expression was increased three- to fourfold in muscle sampled 48 h after the last exercise bout irrespective of the prior training programme (P = 0.027), but p38 MAPK expression was approximately 90% lower than sedentary values. 4. In conclusion, exercise-training of different intensities/durations results in selective postexercise activation of intracellular signalling pathways, which may be one mechanism regulating specific adaptations induced by diverse training programmes.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Physical inactivity, inadequate dietary protein, and low-grade systemic inflammation contribute to age-related muscle loss, impaired function, and disability.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

PURPOSE: High-intensity short-duration interval training (HIT) stimulates functional and metabolic adaptation in skeletal muscle, but the influence of HIT on mitochondrial function remains poorly studied in humans. Mitochondrial metabolism as well as mitochondrial-associated protein expression were tested in untrained participants performing HIT over a 2-week period. METHODS: Eight males performed a single-leg cycling protocol (12 × 1 min intervals at 120% peak power output, 90 s recovery, 4 days/week). Muscle biopsies (vastus lateralis) were taken pre- and post-HIT. Mitochondrial respiration in permeabilized fibers, citrate synthase (CS) activity and protein expression of peroxisome proliferator-activated receptor gamma coactivator (PGC-1α) and respiratory complex components were measured. RESULTS: HIT training improved peak power and time to fatigue. Increases in absolute oxidative phosphorylation (OXPHOS) capacities and CS activity were observed, but not in the ratio of CCO to the electron transport system (CCO/ETS), the respiratory control ratios (RCR-1 and RCR-2) or mitochondrial-associated protein expression. Specific increases in OXPHOS flux were not apparent after normalization to CS, indicating that gross changes mainly resulted from increased mitochondrial mass. CONCLUSION: Over only 2 weeks HIT significantly increased mitochondrial function in skeletal muscle independently of detectable changes in mitochondrial-associated and mitogenic protein expression.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

AIM: Strength training of one limb results in a substantial increase in the strength of the untrained limb, however, it remains unknown what the corticospinal responses are following either eccentric or concentric strength training and how this relates to the cross-education of strength. The aim of this study was to determine if eccentric or concentric unilateral strength training differentially modulates corticospinal excitability, inhibition and the cross-transfer of strength. METHODS: Changes in contralateral (left limb) concentric strength, eccentric strength, motor-evoked potentials, short-interval intracortical inhibition and silent period durations were analyzed in groups of young adults who exercised the right wrist flexors with either eccentric (N=9) or concentric (N=9) contractions for 12 sessions over 4weeks. Control subjects (N=9) did not train. RESULTS: Following training, both groups exhibited a significant strength gain in the trained limb (concentric group increased concentric strength by 64% and eccentric group increased eccentric strength by 62%) and the extent of the cross-transfer of strength was 28% and 47% for the concentric and eccentric group, respectively, which was different between groups (P=0.031). Transcranial magnetic stimulation revealed that eccentric training reduced intracortical inhibition (37%), silent period duration (15-27%) and increased corticospinal excitability (51%) compared to concentric training for the untrained limb (P=0.033). There was no change in the control group. CONCLUSION: The results show that eccentric training uniquely modulates corticospinal excitability and inhibition of the untrained limb to a greater extent than concentric training. These findings suggest that unilateral eccentric contractions provide a greater stimulus in cross-education paradigms and should be an integral part of the rehabilitative process following unilateral injury to maximize the response.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Key points: Skeletal muscle capillary density and vasoreactivity are reduced in obesity, due to reduced nitric oxide bioavailability. Sprint interval training (SIT) has been proposed as a time efficient alternative to moderate-intensity continuous training (MICT), but its effect on the skeletal muscle microvasculature has not been studied in obese individuals. We observed that SIT and MICT led to equal increases in capillarisation and endothelial eNOS content, while reducing endothelial NOX2 content in microvessels of young obese men. We conclude that SIT is equally effective at improving skeletal muscle capillarisation and endothelial enzyme balance, while being a time efficient alternative to traditional MICT. Sprint interval training (SIT) has been proposed as a time efficient alternative to moderate-intensity continuous training (MICT), leading to similar improvements in skeletal muscle capillary density and microvascular function in young healthy humans. In this study we made the first comparisons of the muscle microvascular response to SIT and MICT in an obese population. Sixteen young obese men (age 25 ± 1 years, BMI 34.8 ± 0.9 kg m-2) were randomly assigned to 4 weeks of MICT (40-60 min cycling at ∼65% V˙O2 peak , 5 times per week) or constant load SIT (4-7 constant workload intervals of 200% Wmax 3 times per week). Muscle biopsies were taken before and after training from the m. vastus lateralis to measure muscle microvascular endothelial eNOS content, eNOS serine1177 phosphorylation, NOX2 content and capillarisation using quantitative immunofluorescence microscopy. Maximal aerobic capacity (V˙O2 peak ), whole body insulin sensitivity and arterial stiffness were also assessed. SIT and MICT increased skeletal muscle microvascular eNOS content and eNOS ser1177 phosphorylation in terminal arterioles and capillaries (P < 0.05), but the latter effect was eliminated when normalised to eNOS content (P = 0.217). SIT and MICT also reduced microvascular endothelial NOX2 content (P < 0.05) and both increased capillary density and capillary-fibre perimeter exchange index (P < 0.05). In parallel, SIT and MICT increased V˙O2 peak (P < 0.05) and whole body insulin sensitivity (P < 0.05), and reduced central artery stiffness (P < 0.05). As no significant differences were observed between SIT and MICT it is concluded that SIT is a time efficient alternative to MICT to improve aerobic capacity, insulin sensitivity and muscle capillarisation and endothelial eNOS/NAD(P)Hoxidase protein ratio in young obese men.