943 resultados para resource-use efficiency
Resumo:
Approaches to natural resource management emphasise the importance of involving local people and institutions in order to build capacity, limit costs, and achieve environmental sustainability. Governments worldwide, often encouraged by international donors, have formulated devolution policies and legal instruments that provide an enabling environment for devolved natural resource management. However, implementation of these policies reveals serious challenges. This article explores the effects of limited involvement of local people and institutions in policy development and implementation. An in-depth study of the Forest Policy of Malawi and Village Forest Areas in the Lilongwe district provides an example of externally driven policy development which seeks to promote local management of natural resources. The article argues that policy which has weak ownership by national government and does not adequately consider the complexity of local institutions, together with the effects of previous initiatives on them, can create a cumulative legacy through which destructive resource use practices and social conflict may be reinforced. In short, poorly developed and implemented community based natural resource management policies can do considerably more harm than good. Approaches are needed that enable the policy development process to embed an in-depth understanding of local institutions whilst incorporating flexibility to account for their location-specific nature. This demands further research on policy design to enable rigorous identification of positive and negative institutions and ex-ante exploration of the likely effects of different policy interventions.
Resumo:
Light and water are among essential resources required for production of photosynthates in plants. A study on the effects of weeding regimes and maize planting density on light and water use was conducted during the 2001/2 short and 2002 long rain seasons at Muguga in - the central highlands of Kenya. Weeding regimes were: weed free (W1), weedy (W2), herbicide (W3) and hand weeding twice (W4). Maize planting densities were 9 (D1) and 18 plants m-2 (D2) intercropped with Phaseolus vulgaris (beans). The experiment was laid as randomized complete block design replicated four times and repeated twice. All plots were thinned to 4 plants m-2 at tasseling stage (96 DAE) and thinnings quantified as forage. Soil moisture content (SMC), photosynthetically active radiation (PAR) interception, evapo-transpiration (ET crop), water use efficiency (WUE), and harvest index (HI), were determined. Percent PAR was higher in D2 than in D1 before thinning but higher in D1 than in D2 after thinning in both seasons. PAR interception was highest in W2 but similar in W1, W3 and W4 in both seasons. SMC was significantly lower in W2 but similar in W1, W3 and W4. D2 had lower SMC than D1 in season two. Weeding regime significantly influenced ET crop, while planting density and weeding regime significantly influenced WUE and HI. D2 maximizes water and light use for forage production but results to increased intra-specific plant competition for water and light severely before thinning (96 DAE) that reduce grain yield in dual purpose maize, relative to D1.
Resumo:
Human population growth and resource use, mediated by changes in climate, land use, and water use, increasingly impact biodiversity and ecosystem services provision. However, impacts of these drivers on biodiversity and ecosystem services are rarely analyzed simultaneously and remain largely unknown. An emerging question is how science can improve the understanding of change in biodiversity and ecosystem service delivery and of potential feedback mechanisms of adaptive governance. We analyzed past and future change in drivers in south-central Sweden. We used the analysis to identify main research challenges and outline important research tasks. Since the 19th century, our study area has experienced substantial and interlinked changes; a 1.6°C temperature increase, rapid population growth, urbanization, and massive changes in land use and water use. Considerable future changes are also projected until the mid-21st century. However, little is known about the impacts on biodiversity and ecosystem services so far, and this in turn hampers future projections of such effects. Therefore, we urge scientists to explore interdisciplinary approaches designed to investigate change in multiple drivers, underlying mechanisms, and interactions over time, including assessment and analysis of matching-scale data from several disciplines. Such a perspective is needed for science to contribute to adaptive governance by constantly improving the understanding of linked change complexities and their impacts.
Resumo:
P>1. Much of the current understanding of ecological systems is based on theory that does not explicitly take into account individual variation within natural populations. However, individuals may show substantial variation in resource use. This variation in turn may be translated into topological properties of networks that depict interactions among individuals and the food resources they consume (individual-resource networks). 2. Different models derived from optimal diet theory (ODT) predict highly distinct patterns of trophic interactions at the individual level that should translate into distinct network topologies. As a consequence, individual-resource networks can be useful tools in revealing the incidence of different patterns of resource use by individuals and suggesting their mechanistic basis. 3. In the present study, using data from several dietary studies, we assembled individual-resource networks of 10 vertebrate species, previously reported to show interindividual diet variation, and used a network-based approach to investigate their structure. 4. We found significant nestedness, but no modularity, in all empirical networks, indicating that (i) these populations are composed of both opportunistic and selective individuals and (ii) the diets of the latter are ordered as predictable subsets of the diets of the more opportunistic individuals. 5. Nested patterns are a common feature of species networks, and our results extend its generality to trophic interactions at the individual level. This pattern is consistent with a recently proposed ODT model, in which individuals show similar rank preferences but differ in their acceptance rate for alternative resources. Our findings therefore suggest a common mechanism underlying interindividual variation in resource use in disparate taxa.
Resumo:
In recent years, emerging countries have assumed an increasingly prominent position in the world economy, as growth has picked up in these countries and slowed in developed economies. Two related phenomena, among others, can be associated with this growth: emerging countries were less affected by the 2008-2009 global economic recession; and they increased their participation in foreign direct investment, both inflows and outflows. This doctoral dissertation contributes to research on firms from emerging countries through four independent papers. The first group of two papers examines firm strategy in recessionary moments and uses Brazil, one of the largest emerging countries, as setting for the investigation. Data were collected through a survey on Brazilian firms referring to the 2008-2009 global recession, and 17 hypotheses were tested using structural equation modeling based on partial least squares. Paper 1 offered an integrative model linking RBV to literatures on entrepreneurship, improvisation, and flexibility to indicate the characteristics and capabilities that allow a firm to have superior performance in recessions. We found that firms that pre-recession have a propensity to recognize opportunities and improvisation capabilities for fast and creative actions have superior performance in recessions. We also found that entrepreneurial orientation and flexibility have indirect effects. Paper 2 built on business cycle literature to study which strategies - pro-cyclical or counter-cyclical – enable superior performance in recessions. We found that while most firms pro-cyclically reduce costs and investments during recessions, a counter-cyclical strategy of investing in opportunities created by changes in the environment enables superior performance. Most successful are firms with a propensity to recognize opportunities, entrepreneurial orientation to invest, and flexibility to efficiently implement these investments. The second group of two papers investigated international expansion of multinational enterprises, particularly the use of distance for their location decisions. Paper 3 proposed a conceptual framework to examine circumstances under which distance is less important for international location decisions, taking the new perspective of economic institutional distance as theoretical foundation. The framework indicated that the general preference for low-distance countries is lower: (1) when the company is state owned, rather than private owned; (2) when its internationalization motives are asset, resource, or efficiency seeking, as opposed to market seeking; and (3) when internationalization occurred after globalization and the advent of new technologies. Paper 4 compared five concurrent perspectives of distance and indicated their suitability to the study of various issues based on industry, ownership, and type, motive, and timing of internationalization. The paper also proposed that distance represents the disadvantages of host countries for international location decisions; as such, it should be used in conjunction with factors that represent host country attractiveness, or advantages as international locations. In conjunction, papers 3 and 4 provided additional, alternative explanations for the mixed empirical results of current research on distance. Moreover, the studies shed light into the discussion of differences between multinational enterprises from emerging countries versus those from advanced countries.
Resumo:
Quatro experimentos foram conduzidos na Unesp, Brasil, com o objetivo de determinar a viabilidade agronômica de cultivos consorciados de alface e tomate em ambiente protegido. Consórcios estabelecidos por transplantes da alface aos 0, 10, 20 e 30 dias após o transplante (DAT) do tomate e de tomate aos 0, 10, 20 e 30 DAT da alface, foram avaliados em duas épocas e comparados às suas monoculturas. Cada experimento foi conduzido em delineamento de blocos ao acaso, com nove tratamentos. Verificou-se que a produtividade do tomate e a classificação dos frutos não foram influenciadas pela alface, mas a produção da alface foi menor em consórcio. Quanto mais atrasado o transplante da alface menor foi a sua produtividade. Houve efeito de época de cultivo sobre a dimensão da vantagem agronômica do consórcio sobre a monocultura. Na primeira época de cultivo, os consórcios estabelecidos com o transplante da alface de 30 dias antes e até 20 dias após o transplante do tomate proporcionaram índices de eficiência do uso da área (EUA) de 1,63 a 2,22. Na segunda época, os consórcios estabelecidos com o transplante da alface antes do tomate, em até 30 dias, proporcionaram índices EUA de 1,57 a 2,05.
Resumo:
center dot Background and Aims Drought is a major environmental constraint affecting growth and production of Coffea canephora. Selection of C. canephora clones has been largely empirical as little is known about how clones respond physiologically to drought. Using clones previously shown to differ in drought tolerance, this study aimed to identify the extent of variation of water use and the mechanisms responsible, particularly those associated morphological traits.center dot Methods Clones (14 and 120, drought-tolerant; 46 and 109A, drought-sensitive, based on their abilities to yield under drought) were grown in 120-L pots until they were 12-months old, when an irrigation and a drought treatment were applied; plants were droughted until the pressure potential (Psi(x)) before dawn (pre-dawn) reached -3.0 MPa. Throughout the drought period, Psi(x) and stomatal conductance (g(s)) were measured. At the end of the experiment, carbon isotope ratio and parameters from pressure-volume curves were estimated. Morphological traits were also assessed.center dot Key Results and Conclusions With irrigation, plant hydraulic conductance (K-L), midday Psi(x) and total biomass were all greater in clones 109A and 120 than in the other clones. Root mass to leaf area ratio was larger in clone 109A than in the others, whereas rooting depth was greater in drought-tolerant than in drought-sensitive clones. Predawn Psi(x) of -3.0 MPa was reached fastest by 109A, followed progressively by clones 46, 120 and 14. Decreases in g(s) with declining Psi(x), or increasing evaporative demand, were similar for clones 14, 46, and 120, but lower in 109A. Carbon isotope ratio increased under drought; however, it was lower in 109A than in other clones. For all clones, Psi(x), g(s) and KL recovered rapidly following re-watering. Differences in root depth, KL and stomatal control of water use, but not osmotic or elastic adjustments, largely explained the differences in relative tolerance to drought stress of clones 14 and 120 compared with clones 46 and 109A.
Resumo:
We determined microhabitat and diet niche for tadpoles from two ponds in an agricultural landscape. Additionally, we verified the intraspecific variation in resource use, and if diet and microhabitat use were correlated. Tadpoles found in the two ponds differed in microhabitat use, because in the larger pond they explored deeper places far from the margin. There were three groups with high microhabitat niche overlap. In both ponds, plant cover was the best descriptor to explain interspecific variation in microhabitat use. Tadpoles of all species ingested mainly Bacillariophyceae and Trachellomonas however the diet differed intraspecifically in the species from the two ponds. Ten items in the temporary pond and 15 items in the permanent one were ingested by all species; however, the relative abundance of each item differed. Diet similarity was not correlated to similarity in microhabitat use. In this study, diet was as important as microhabitat use to explain resource partitioning.
Resumo:
Includes bibliography
Resumo:
Includes bibliography
Resumo:
Pós-graduação em Aquicultura - FCAV
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)
Resumo:
Wood production represents a large but variable fraction of gross primary production (GPP) in highly productive Eucalyptus plantations. Assessing patterns of carbon (C) partitioning (C flux as a fraction of GPP) between above- and belowground components is essential to understand mechanisms driving the C budget of these plantations. Better knowledge of fluxes and partitioning to woody and non-woody tissues in response to site characteristics and resource availability could provide opportunities to increase forest productivity. Our study aimed at investigating how C allocation varied within one apparently homogeneous 90 ha stand of Eucalyptus grandis (W. Hill ex Maiden) in Southeastern Brazil. We assessed annual above-ground net primary production (ANPP: stem, leaf, and branch production) and total belowground C flux (TBCF: the sum of root production and respiration and mycorrhizal production and respiration), GPP (computed as the sum of ANPP, TBCF and estimated aboveground respiration) on 12 plots representing the gradient of productivity found within the stand. The spatial heterogeneity of topography and associated soil attributes across the stand likely explained this fertility gradient. Component fluxes of GPP and C partitioning were found to vary among plots. Stem NPP ranged from 554 g C m(-2) year(-1) on the plot with lowest GPP to 923 g C m(-2) year(-1) on the plot with highest GPP. Total belowground carbon flux ranged from 497 to 1235 g C m(-2) year(-1) and showed no relationship with ANPP or GPP. Carbon partitioning to stem NPP increased from 0.19 to 0.23, showing a positive trend of increase with GPP (R-2 = 0.29, P = 0.07). Variations in stem wood production across the gradient of productivity observed at our experimental site were a result of the variability in C partitioning to different forest system components.