983 resultados para relative spatial shift
Resumo:
Aim: Greater understanding of the processes underlying biological invasions is required to determine and predict invasion risk. Two subspecies of olive (Olea europaea subsp. europaea and Olea europaea subsp. cuspidata) have been introduced into Australia from the Mediterranean Basin and southern Africa during the 19th century. Our aim was to determine to what extent the native environmental niches of these two olive subspecies explain the current spatial segregation of the subspecies in their non-native range. We also assessed whether niche shifts had occurred in the non-native range, and examined whether invasion was associated with increased or decreased occupancy of niche space in the non-native range relative to the native range. Location: South-eastern Australia, Mediterranean Basin and southern Africa. Methods: Ecological niche models (ENMs) were used to quantify the similarity of native and non-native realized niches. Niche shifts were characterized by the relative contribution of niche expansion, stability and contraction based on the relative occupancy of environmental space by the native and non-native populations. Results: Native ENMs indicated that the spatial segregation of the two subspecies in their non-native range was partly determined by differences in their native niches. However, we found that environmentally suitable niches were less occupied in the non-native range relative to the native range, indicating that niche shifts had occurred through a contraction of the native niches after invasion, for both subspecies. Main conclusions: The mapping of environmental factors associated with niche expansion, stability or contraction allowed us to identify areas of greater invasion risk. This study provides an example of successful invasions that are associated with niche shifts, illustrating that introduced plant species are sometimes readily able to establish in novel environments. In these situations the assumption of niche stasis during invasion, which is implicitly assumed by ENMs, may be unreasonable.
Resumo:
Major ice sheets were permanently established on Antarctica approximately 34 million years ago, close to the Eocene/ Oligocene boundary, at the same time as a permanent deepening of the calcite compensation depth in the world's oceans. Until recently, it was thought that Northern Hemisphere glaciation began much later, between 11 and 5million years ago. This view has been challenged, however, by records of ice rafting at high northern latitudes during the Eocene epoch and by estimates of global ice volume that exceed the storage capacity of Antarctica at the same time as a temporary deepening of the calcite compensation depth 41.6 million years ago. Here we test the hypothesis that large ice sheets were present in both hemispheres 41.6 million years ago using marine sediment records of oxygen and carbon isotope values and of calcium carbonate content from the equatorial Atlantic Ocean. These records allow, at most, an ice budget that can easily be accommodated on Antarctica, indicating that large ice sheets were not present in the Northern Hemisphere. The records also reveal a brief interval shortly before the temporary deepening of the calcite compensation depth during which the calcite compensation depth shoaled, ocean temperatures increased and carbon isotope values decreased in the equatorial Atlantic. The nature of these changes around 41.6 million years ago implies common links, in terms of carbon cycling, with events at the Eocene/Oligocene boundary and with the 'hyperthermals' of the Early Eocene climate optimum. Our findings help to resolve the apparent discrepancy between the geological records of Northern Hemisphere glaciation and model results that indicate that the threshold for continental glaciation was crossed earlier in the Southern Hemisphere than in the Northern Hemisphere.
Resumo:
Uncertainty information for global leaf area index (LAI) products is important for global modeling studies but usually difficult to systematically obtain at a global scale. Here, we present a new method that cross-validates existing global LAI products and produces consistent uncertainty information. The method is based on a triple collocation error model (TCEM) that assumes errors among LAI products are not correlated. Global monthly absolute and relative uncertainties, in 0.05° spatial resolutions, were generated for MODIS, CYCLOPES, and GLOBCARBON LAI products, with reasonable agreement in terms of spatial patterns and biome types. CYCLOPES shows the lowest absolute and relative uncertainties, followed by GLOBCARBON and MODIS. Grasses, crops, shrubs, and savannas usually have lower uncertainties than forests in association with the relatively larger forest LAI. With their densely vegetated canopies, tropical regions exhibit the highest absolute uncertainties but the lowest relative uncertainties, the latter of which tend to increase with higher latitudes. The estimated uncertainties of CYCLOPES generally meet the quality requirements (± 0.5) proposed by the Global Climate Observing System (GCOS), whereas for MODIS and GLOBCARBON only non-forest biome types have met the requirement. Nevertheless, none of the products seems to be within a relative uncertainty requirements of 20%. Further independent validation and comparative studies are expected to provide a fair assessment of uncertainties derived from TCEM. Overall, the proposed TCEM is straightforward and could be automated for the systematic processing of real time remote sensing observations to provide theoretical uncertainty information for a wider range of land products.
Resumo:
Tropical climate is variable on astronomical time scale, driving changes in surface and deep-sea fauna during the Pliocene-Pleistocene. To understand these changes in the tropical Indian Ocean over the past 2.36 Myr, we quantitatively analyzed deep-sea benthic foraminifera and selected planktic foraminifera from >125 µm size fraction from Deep Sea Drilling Project Site 219. The data from Site 219 was combined with published foraminiferal and isotope data from Site 214, eastern Indian Ocean to determine the nature of changes. Factor and cluster analyses of the 28 highest-ranked species distinguished four biofacies, characterizing distinct deep-sea environmental settings. These biofacies have been named after their most dominant species such as Stilostomella lepidula-Pleurostomella alternans (Sl-Pa), Nuttallides umbonifer-Globocassidulina subglobosa (Nu-Gs), Oridorsalis umbonatus-Gavelinopsis lobatulus (Ou-Gl) and Epistominella exigua-Uvigerina hispido-costata (Ee-Uh) biofacies. Biofacies Sl-Pa ranges from ~2.36 to 0.55 Myr, biofacies Nu-Gs ranges from ~1.9 to 0.65 Myr, biofacies Ou-Gl ranges from ~1 to 0.35 Myr and biofacies Ee-Uh ranges from 1.1 to 0.25 Myr. The proxy record indicates fluctuating tropical environmental conditions such as oxygenation, surface productivity and organic food supply. These changes appear to have been driven by changes in monsoonal wind intensity related to glacial-interglacial cycles. A shift at ~1.2-0.9 Myr is observed in both the faunal and isotope records at Site 219, indicating a major increase in monsoon-induced productivity. This coincides with increased amplitude of glacial cycles, which appear to have influenced low latitude monsoonal climate as well as deep-sea conditions in the tropical Indian Ocean.
Resumo:
Effects of ocean acidification on Emiliania huxleyi strain RCC 1216 (calcifying, diploid life-cycle stage) and RCC 1217 (non-calcifying, haploid life-cycle stage) were investigated by measuring growth, elemental composition, and production rates under different pCO2 levels (380 and 950 µatm). In these differently acclimated cells, the photosynthetic carbon source was assessed by a (14)C disequilibrium assay, conducted over a range of ecologically relevant pH values (7.9-8.7). In agreement with previous studies, we observed decreased calcification and stimulated biomass production in diploid cells under high pCO2, but no CO2-dependent changes in biomass production for haploid cells. In both life-cycle stages, the relative contributions of CO2 and HCO3 (-) uptake depended strongly on the assay pH. At pH values =< 8.1, cells preferentially used CO2 (>= 90 % CO2), whereas at pH values >= 8.3, cells progressively increased the fraction of HCO3 (-) uptake (~45 % CO2 at pH 8.7 in diploid cells; ~55 % CO2 at pH 8.5 in haploid cells). In contrast to the short-term effect of the assay pH, the pCO2 acclimation history had no significant effect on the carbon uptake behavior. A numerical sensitivity study confirmed that the pH-modification in the (14)C disequilibrium method yields reliable results, provided that model parameters (e.g., pH, temperature) are kept within typical measurement uncertainties. Our results demonstrate a high plasticity of E. huxleyi to rapidly adjust carbon acquisition to the external carbon supply and/or pH, and provide an explanation for the paradoxical observation of high CO2 sensitivity despite the apparently high HCO3 (-) usage seen in previous studies.
Resumo:
To identify the properties of taxa sensitive and resistant to ocean acidification (OA), we tested the hypothesis that coral reef calcifiers differ in their sensitivity to OA as predictable outcomes of functional group alliances determined by conspicuous traits. We contrasted functional groups of eight corals and eight calcifying algae defined by morphology in corals and algae, skeletal structure in corals, spatial location of calcification in algae, and growth rate in corals and algae. The responses of calcification to OA were unrelated to morphology and skeletal structure in corals; they were, however, affected by growth rate in corals and algae (fast calcifiers were more sensitive than slow calcifiers), and by the site of calcification and morphology in algae. Species assemblages characterized by fast growth, and for algae, also cell-wall calcification, are likely to be ecological losers in the future ocean. This shift in relative success will affect the relative and absolute species abundances as well as the goods and services provided by coral reefs.
Resumo:
This paper presents a framework for an SCGE model that is compatible with the Armington assumption and explicitly considers transport activities. In the model, the trade coefficient takes the form of a potential function,and the equilibrium market price becomes similar to the price index of varietal goods in the context of new economic geography (NEG). The features of the model are investigated by using the minimal setting, which comprises two non-transport sectors and three regions. Because transport costs are given exogenously to facilitate study of their impacts, commodity prices are also determined relative to them. The model can be described as a system of homogeneous equations, where an output in one region can arbitrarily be determined similarly as a price in the Walrasian equilibrium. The model closure is sensitive to formulation consistency so that homogeneity of the system would be lost by use of an alternative form of trade coefficients.
Resumo:
Persistence and abundance of species is determined by habitat availability and the ability to disperse and colonize habitats at contrasting spatial scales. Favourable habitat fragments are also heterogeneous in quality, providing differing opportunities for establishment and affecting the population dynamics of a species. Based on these principles, we suggest that the presence and abundance of epiphytes may reflect their dispersal ability, which is primarily determined by the spatial structure of host trees, but also by host quality. To our knowledge there has been no explicit test of the importance of host tree spatial pattern for epiphytes in Mediterranean forests. We hypothesized that performance and host occupancy in a favourable habitat depend on the spatial pattern of host trees, because this pattern affects the dispersal ability of each epiphyte and it also determines the availability of suitable sites for establishment. We tested this hypothesis using new point pattern analysis tools and generalized linear mixed models to investigate the spatial distribution and performance of the epiphytic lichen Lobaria pulmonaria, which inhabits two types of host trees (beeches and Iberian oaks). We tested the effects on L. pulmonaria distribution of tree size, spatial configuration, and host tree identity. We built a model including tree size, stand structure, and several neighbourhood predictors to understand the effect of host tree on L. pulmonaria. We also investigated the relative importance of spatial patterning on the presence and abundance of the species, independently of the host tree configuration. L. pulmonaria distribution was highly dependent on habitat quality for successful establishment, i.e., tree species identity, tree diameter, and several forest stand structure surrogates. For beech trees, tree diameter was the main factor influencing presence and cover of the lichen, although larger lichen-colonized trees were located close to focal trees, i.e., young trees. However, oak diameter was not an important factor, suggesting that bark roughness at all diameters favoured lichen establishment. Our results indicate that L. pulmonaria dispersal is not spatially restricted, but it is dependent on habitat quality. Furthermore, new spatial analysis tools suggested that L. pulmonaria cover exhibits a distinct pattern, although the spatial pattern of tree position and size was random.
Resumo:
Persistence and abundance of species is determined by habitat availability and the ability to disperse and colonize habitats at contrasting spatial scales. Favourable habitat fragments are also heterogeneous in quality, providing differing opportunities for establishment and affecting the population dynamics of a species. Based on these principles, we suggest that the presence and abundance of epiphytes may reflect their dispersal ability, which is primarily determined by the spatial structure of host trees, but also by host quality. To our knowledge there has been no explicit test of the importance of host tree spatial pattern for epiphytes in Mediterranean forests. We hypothesized that performance and host occupancy in a favourable habitat depend on the spatial pattern of host trees, because this pattern affects the dispersal ability of each epiphyte and it also determines the availability of suitable sites for establishment. We tested this hypothesis using new point pattern analysis tools and generalized linear mixed models to investigate the spatial distribution and performance of the epiphytic lichen Lobaria pulmonaria, which inhabits two types of host trees (beeches and Iberian oaks). We tested the effects on L. pulmonaria distribution of tree size, spatial configuration, and host tree identity. We built a model including tree size, stand structure, and several neighbourhood predictors to understand the effect of host tree on L. pulmonaria. We also investigated the relative importance of spatial patterning on the presence and abundance of the species, independently of the host tree configuration. L. pulmonaria distribution was highly dependent on habitat quality for successful establishment, i.e., tree species identity, tree diameter, and several forest stand structure surrogates. For beech trees, tree diameter was the main factor influencing presence and cover of the lichen, although larger lichen-colonized trees were located close to focal trees, i.e., young trees. However, oak diameter was not an important factor, suggesting that bark roughness at all diameters favoured lichen establishment. Our results indicate that L. pulmonaria dispersal is not spatially restricted, but it is dependent on habitat quality. Furthermore, new spatial analysis tools suggested that L. pulmonaria cover exhibits a distinct pattern, although the spatial pattern of tree position and size was random.
Resumo:
According to Corine Land Cover databases, in Europe between 1990 and 2000,77% of new artificial surfaces were built on previous agrarian areas. Urban sprawl ¡s far from being under control, between 2000 and 2006 new artificial land has grown in larger proportion than the decade before. In Spain, like in most countries, the impact of urban sprawl during the last decades has been especially significant in periurban agrarian spaces: between 2000 and 2006, 73% of new artificial surfaces were built on previous agrarian areas. The indirect impact of this trend has been even more relevant, as the expectations of appreciation in the value of land after new urban developments reinforce the ongoing trend of abandonment of agricultural land. In Madrid between 1980 and 2000 the loss of agricultural land due to abandonment of exploitation was 2-fold that due to transformation into urban areas. By comparing four case studies: Valladolild, Montpellier.Florence and Den Haag, this paper explores if urban and territorial planning may contribute to reduce urban pressure on the hinterland. In spite of their diversity, these regions have in common a relative prosperity arising from their territorial endowments, though their landscapes are still under pressure. The three last ones have been working for years on mainstream concepts like multifunctional agriculture. The systematic comparison and the analysis of successful approaches provide some clues on how to reconsider urban planning in order to preserve agricultural land. The final remarks highlight the context in which public commitment, legal protection instruments and financial strategies may contribute to the goals of urban, peri-urban or regional planning about fostering agrarian ecosystem services
Resumo:
La importancia del proceso de dispersión de semillas en la estructura y dinámica de los ecosistemas es ampliamente reconocida. Sin embargo, para los bosques tropicales estacionalmente secos los estudios relacionados con este proceso son aún escasos y dispersos en comparación con los bosques tropicales lluviosos. En este trabajo se estudió la importancia de los síndromes de dispersión de semillas en la estructuración de comunidades, mediante el análisis de los patrones de dispersión de semillas en el espacio y tiempo para comunidades de leñosas en los bosques secos del suroccidente Ecuatoriano. Esta área forma parte de la región Tumbesina, una de las áreas de endemismo más importantes del mundo, pero también uno de los hotspots más amenazados. El clima se caracteriza por una estación seca que va de mayo a noviembre y una estación lluviosa que se extiende desde diciembre a abril. Para toda esta zona se estima una temperatura promedio anual entre 20° y 26°C y una precipitación promedio anual entre 300 y 700 mm. El trabajo de campo se desarrolló entre febrero de 2009 y septiembre de 2012. El primer paso fue la recopilación de información sobre las especies leñosas nativas de los bosques secos del suroccidente de Ecuador, que permitiera asignar a cada especie a un síndrome de dispersión para determinar el espectro de síndromes de dispersión de semillas. Luego, utilizando la información disponible de 109 parcelas establecidas previamente a lo largo de cuatro cantones de la provincia de Loja que conservan bosques secos en buen estado, se analizó la relación entre el síndrome de dispersión y condiciones ambientales. La relación de los síndromes de dispersión con los patrones espaciales de las especies y con los patrones de la lluvia y banco de semillas se estudió dentro de una parcela permanente de 9 ha, en la Reserva Ecológica Arenillas. Dentro de esta parcela se estableció un transecto de aproximadamente 3,4 km, que se recorrió mensualmente para colectar excretas de cérvidos y analizar el rol de este grupo como dispersor de semillas. Una gran variedad de plantas en los bosques secos tropicales del suroccidente de Ecuador requirió la asistencia de animales para la dispersión de semillas. Sin embargo, un análisis del espectro de dispersión considerando no solo la riqueza, sino también la abundancia relativa de especies, permitió determinar que a pesar de la alta variedad de especies zoócoras, la mayor parte de la comunidad correspondía a individuos anemócoros, que no proveen ninguna recompensa para la dispersión por animales. Este patrón puede deberse a la abundancia relativa de hábitats adecuados para especies con diferente síndrome de dispersión. Las condiciones ambientales afectaron la estructura del espectro de dispersión en la comunidad de bosque seco neotropical estudiada. El análisis de la importancia relativa del síndrome de dispersión y de la heterogeneidad espacial en la formación de patrones espaciales de árboles adultos permitió determinar que la heterogeneidad ambiental ejercía un efecto adicional (y en algunos el único) en la formación de patrones agregados de la mayoría de especies estudiadas. Los resultados señalaron diferencias en los patrones espaciales de las especies dependiendo del síndrome de dispersión, pero también una gran variación en los patrones espaciales incluso entre especies del mismo síndrome de dispersión. El análisis simultáneo de los patrones de la lluvia de semillas y banco de semillas de una comunidad de leñosas y su relación con la vegetación establecida indicaron que la lluvia de semillas era temporalmente variable en número de especies y abundancia de semillas, y dependía del síndrome de dispersión. El síndrome de dispersión también influyó en la formación de bancos de semillas, siendo las especies con capacidad de dispersión limitada (autócoras) las de mayor riqueza de especies y abundancia de semillas. Los cérvidos también se consideraron como un elemento clave en el proceso de dispersión de semillas. Al menos ocho especies leñosas fueron dispersadas legítimamente vía endozoócora. La mayoría de las especies dispersadas presentaron diásporas sin adaptaciones obvias para la dispersión, por lo que la ingestión de semillas por cérvidos se constituye en una vía potencial para la dispersión de sus semillas a largas distancias y, con ello, mejora la posibilidad de colonizar nuevos sitios y mantener el flujo genético. Los resultados de este estudio aportan nuevas evidencias para el entendimiento de la importancia de los procesos de dispersión de semillas en la estructura de los bosques secos neotropicales. Uno de los principales hallazgos a partir de estos cuatro capítulos es que los patrones espaciales de las especies, así como las estrategias que utilizan para dispersarse y hacer frente a las condiciones adversas (es decir, lluvia o banco de semillas) llevan consigo un efecto del síndrome de dispersión, y que la intensidad ese efecto depende a la vez de las condiciones ambientales del lugar. ABSTRACT The importance of seed dispersal process in the estructuring and ecosystem dynamic is widely recongnized. However, for seasonally tropical dry forest studies related to this process are still scarce and scattered compared to tropical rain forests. The present research deals with the importance of seed dispersal syndromes as a driver in the community structure, focusing its attention to temporal and spatial patterns of seed dispersal in woody communities of seasonally dry forest at Southwestern Ecuador. This area is part of the Tumbesian region, one of the most important areas of endemism, but also one of the most threatened areas around the world. Climate is characterized by a dry season from May to November, and a rainy season from December to April. For the whole area an average temperature between 20 ° and 26 ° C, and an average annual rainfall between 300 and 700 mm are estimated. Fieldwork was carried out between February 2009 and September 2012. During a first step information about native woody species of dry forests of southwestern Ecuador was gathered, enabling to assign a dispersal syndrome to each species to determine the seed dispersal spectrum. In a second step, available information from 109 established plots along four municipalities in Loja province, which hold the highest and best conserved dry forest remanants, was analyzed to establish the relationship between dispersal syndromes and environmental conditions. The relationships between dispersal syndromes and species spatial patterns; and between dispersal syndromes and seed rain and seed bank patterns, were studied within a permanent plot of 9 ha, in the Arenillas Ecological Reserve. Within this plot one transect of approximately 3.4 km was set to collect monthly deer droppings, which were used to latter analyze the rol of this group as seed dispersers. The results showed that a large variety of plants in tropical dry forest of Southwestern Ecuador require animal assistance to dispers their seeds. However, an analysis of seed dispersal spectrum considering not only species richness, but also the relative abundance of species, allowed to determine that despite the high variety of zoochorous species, most individuals in the community corresponds to anemochoruos species. This shift may be due to the relative abundance of habitats that are suitable for species with different dispersal syndromes. Moreover, quantitative data analysis showed that environmental conditions affect the structure of seed dispersal spectrum in the studied community. The analysis of relative importance of dispersal syndrome, and the environmental heterogeneity on formation of adult trees spatial patterns, indicated that environmental heterogeneity exert an additional (or was the only) effect limiting the distribution of most species in this forest. The findings showed differences in spatial patterns related to dispersal syndrome, but also showed a large variation in spatial patterns even among species sharing the same dispersal syndrome. Simultaneous analysis of seed rain and seed bank patterns of a woody community, and their relationship with established vegetation, suggested that seed rain is temporally variable in species number and seeds abundance, and that variation is related to the dispersal syndrome. Dispersal syndrome also influenced on the formation of seed banks, being species with limited dispersal abilities (autochorous) the ones with highest species richness and seed abundance. Deer were found as a key element in the seed dispersal process. At least to eight woody species were dispersed legitimately by ingestion. Diaspores of most dispersed species had no obvious adaptations to seed dispersal, therefore, seed ingestion by deer represents a potential pathway for long-distance dispersal, and hence, improves the chances to colonizing new sites and to maintain gene flow. Overall, these results provide new evidence for understanding the importance of seed dispersal processes in the structure of Neotropical dry forests. One of the major findings from these four chapters is that spatial patterns of species, and the strategies used to disperse their seeds and to deal with the adverse conditions (i.e. seed rain or seed bank) are related with dispersal syndromes, and the intensity of that relation depends in turn, on environmental conditions.
Resumo:
A novel time-stepping shift-invert algorithm for linear stability analysis of laminar flows in complex geometries is presented. This method, based on a Krylov subspace iteration, enables the solution of complex non-symmetric eigenvalue problems in a matrix-free framework. Validations and comparisons to the classical exponential method have been performed in three different cases: (i) stenotic flow, (ii) backward-facing step and (iii) lid-driven swirling flow. Results show that this new approach speeds up the required Krylov subspace iterations and has the capability of converging to specific parts of the global spectrum. It is shown that, although the exponential method remains the method of choice if leading eigenvalues are sought, the performance of the present method could be dramatically improved with the use of a preconditioner. In addition, as opposed to other methods, this strategy can be directly applied to any time-stepper, regardless of the temporal or spatial discretization of the latter.
Resumo:
We assessed whether the relative importance of positive and negative interactions in early successional communities varied across a large landslide on Casita Volcano (Nicaragua). We tested several hypotheses concerning the signatures of these processes in the spatial patterns of woody pioneer plants, as well as those of mortality and recruitment events, in several zones of the landslide differing in substrate stability and fertility, over a period of two years (2001 and 2002). We identified all woody individuals with a diameter >1 cm and mapped them in 28 plots measuring 10 × 10-m. On these maps, we performed a spatial point pattern analysis using univariate and bivariate pair-correlation functions; g (r) and g12 (r), and pairwise differences of univariate and bivariate functions. Spatial signatures of positive and negative interactions among woody plants were more prevalent in the most and least stressful zones of the landslide, respectively. Natural and human-induced disturbances such as the occurrence of fire, removal of newly colonizing plants through erosion and clearcutting of pioneer trees were also identified as potentially important pattern-creating processes. These results are in agreement with the stress-gradient hypothesis, which states that the relative importance of facilitation and competition varies inversely across gradients of abiotic stress. Our findings also indicate that the assembly of early successional plant communities in large heterogeneous landslides might be driven by a much larger array of processes than previously thought.