855 resultados para reducing atmosphere
Resumo:
The greatest attraction to using carambola (Averrhoa carambola L.) in the fresh-cut market is the star shape that the fruit presents after a transverse cut. Carambola is well-suited for minimal processing, but cut surface browning is a main cause of deterioration. This problem is exacerbated as a result of mechanical injuries occurring during processing and is mainly induced by the leakage of phenolic compounds from the vacuole and subsequent oxidation by polyphenol oxidase (PPO) (Augustin et al., 1985). The use of browning inhibitors in processed fruits is restricted to compounds that are non-toxic, ‘wholesome’, and that do not adversely affect taste and flavour (Gil et al., 1998). In the past, browning was mainly controlled by the action of sulphites, but the use of this compound has declined due to allergic reactions in asthmatics (Weller et al., 1995). The shelf life of fresh-cut products may be extended by a combination of oxygen exclusion and the use of enzymatic browning inhibitors. The objectives of this work were to determine the effects of: (1) post-cutting chemical treatments of ascorbic, citric, oxalic acids, and EDTA-Ca; (2) atmospheric modification; and (3) combinations of the above, on the shelf life of carambola slices based on appearance, colour and polyphenol oxidase activity
Resumo:
Introduction Climate change has been described as the most significant global health threat of the 21st century. Already, negative impacts on human health and wellbeing are being observed. These impacts present enormous challenges for the healthcare sector and the time has come for healthcare professionals to demonstrate leadership in addressing these challenges. Since any unsustainable organizational practices of healthcare organisations may ultimately have a negative impact on human health, there is an implicit moral obligation for these organisations and the people who work in them, to deliver healthcare more sustainably. If one considers that in 2010 pharmaceuticals comprised 22% of the carbon footprint of the NHS England (equating to 4.4 million tonnes of CO2 emissions) and 3% of England’s total carbon footprint (NHS Sustainable Development Unit, 2012), by reducing the carbon footprint of pharmaceuticals used in their healthcare organisations, pharmacists can have a significant impact on reducing the organisation’s total carbon footprint and ultimately on the public’s health. Aims The engagement of pharmacists with sustainability initiatives in the workplace has been largely unreported in international and national pharmacy journals. This paper aims to highlight the important role that pharmacists can play in helping to reduce the carbon footprint of healthcare delivery. Methods Literature was reviewed to identify areas where pharmacists could influence the more sustainable use of pharmaceuticals in their organisations. Discussion Much of the carbon footprint of pharmaceuticals is embedded carbon from their manufacture and delivery. Through efficient inventory management practices, pharmacists can reduce the number of orders and potentially reduce the number of deliveries required. Pharmacists can also help to reduce the amount of pharmaceutical waste generated. Of the waste that is generated, they can help improve the segregation of waste streams to increase the amount of non-contaminated packaging waste that is recycled and reduce the amount of pharmaceutical waste being incinerated or ending up in landfill. Reference NHS Sustainable Development Unit. (2012). Sustainability in the NHS Health Check 2012. NHS Sustainable Development Unit. Cambridge, UK: NHS Sustainable Devlopment Unit.
Resumo:
Cooking efficiency and related fuel economy issues have been studied in a particular rural area of India. Following a description of the cooking practices and conditions in this locale, cooking efficiency is examined. A cooking efficiency of only 6% was found. The use of aluminium rather than clay pots results in an increased efficiency. In addition, cooking efficiency correlates very well with specific fuel consumption. The latter parameter is much simpler to analyse than cooking efficiency. The energy losses during cooking are examined in the second part of this case study. The major energy losses are heating of excess air, heat carried away by the combustion products, heat transmitted to the stove body and floor, and the chemical energy in charcoal residue. The energy loss due to the evaporation of cooking water is also significant because it represents about one-third of the heat reaching the pots.
Resumo:
A field experiment was carried out in southeastern Australia to assess the short-term mortality and stress incurred by juvenile school prawns (Metapenaeus macleayi) discarded from an estuarine trawler. Some 35% of the prawns died up to 72 h after being caught in a trawl, exposed to air during sorting and separation from the retained catch (as per normal commercial procedures), then discarded into replicate cages. Total mortality was partitioned into that caused by trawling (about 16% of mortalities), and by subsequent sorting and grading (about 19%). Assuming that the majority of the non-penaeid bycatch is excluded from trawls (by the use of bycatch reduction devices), the latter mortalities could be almost eliminated by sorting and separating unwanted school prawns in water-filled compartments. Emersion stress was measured as concentrations of l-lactate in the haemolymph, which were elevated for at least 40 min following capture, but similar among all trawled treatments. l-lactate levels decreased within the first 24 h post-capture, then remained constant over at least the next 48 h, and were greater than baseline levels. The potential benefits associated with subtle changes to handling practices onboard estuarine trawlers are discussed.
Resumo:
Development of improved pasture grass via chemical mutagenesis and selection of mutations in lignin genes.
Resumo:
Calypso mango is a relatively new variety owned by DEEDI and managed/marketed by One Harvest (Queensland-based). It is a major mango variety for the retail chains. Its main limitation is a sensitive skin, which results in lenticel spotting and skin browning.
Resumo:
Up to 80% of avocados on the retail shelf have defects in the flesh which reduces consumer satisfaction. Flesh bruising is the single most important contributor. Avocados also develop skin spotting during harvesting and packing which can reduce domestic and international customer confidence. This project will identify where bruising occurs, develop decision aid tools to help industry reduce flesh bruising in ripe fruit, and understand the commercial impacts of skin spotting. The project will include a PhD student with stipend coming from an international scholarship and in kind support from the University of Queensland.
Resumo:
Diseases remain a significant impediment to the achievement of maximum yield potential of pulses (chickpea, peanut and mungbean) and sunflowers in the GRDC northern region. This project worked closely with public and private breeding programs to identify sources of resistance to the major diseases of pulses and sunflower that dominate in the region. Through varied surveillance activities, a watching brief on pulse and sunflower diseases was maintained and a timely and appropriate response was made to several significant disease outbreaks. Information on the biology and management of diseases was extended to clients in a wide variety of ways.
Resumo:
In collaboration with the New South Wales Department of Primary Industries we compared the effectiveness of the spanner crab monitoring systems used by New South Wales and Queensland and developed a fishery-independent survey protocol acceptable to both states. The objectives of this project were to: 1. Determine the age at which spanner crabs (Ranina ranina) recruit to the fishery 2. Develop a common methodology for monitoring and assessing the Australian spanner crab stock 3. Investigate sources of variability in apparent population density.
Resumo:
Ozone (O3) is a reactive gas present in the troposphere in the range of parts per billion (ppb), i.e. molecules of O3 in 109 molecules of air. Its strong oxidative capacity makes it a key element in tropospheric chemistry and a threat to the integrity of materials, including living organisms. Knowledge and control of O3 levels are an issue in relation to indoor air quality, building material endurance, respiratory human disorders, and plant performance. Ozone is also a greenhouse gas and its abundance is relevant to global warming. The interaction of the lower troposphere with vegetated landscapes results in O3 being removed from the atmosphere by reactions that lead to the oxidation of plant-related components. Details on the rate and pattern of removal on different landscapes as well as the ultimate mechanisms by which this occurs are not fully resolved. This thesis analysed the controlling processes of the transfer of ozone at the air-plant interface. Improvement in the knowledge of these processes benefits the prediction of both atmospheric removal of O3 and its impact on vegetation. This study was based on the measurement and analysis of multi-year field measurements of O3 flux to Scots pine (Pinus sylvestris L.) foliage with a shoot-scale gas-exchange enclosure system. In addition, the analyses made use of simultaneous CO2 and H2O exchange, canopy-scale O3, CO2 and H2O exchange, foliage surface wetness, and environmental variables. All data was gathered at the SMEAR measuring station (southern Finland). Enclosure gas-exchange techniques such as those commonly used for the measure of CO2 and water vapour can be applied to the measure of ozone gas-exchange in the field. Through analysis of the system dynamics the occurring disturbances and noise can be identified. In the system used in this study, the possible artefacts arising from the ozone reactivity towards the system materials in combination with low background concentrations need to be taken into account. The main artefact was the loss of ozone towards the chamber walls, which was found to be very variable. The level of wall-loss was obtained from simultaneous and continuous measurements, and was included in the formulation of the mass balance of O3 concentration inside the chamber. The analysis of the field measurements in this study show that the flux of ozone to the Scots pine foliage is generated in about equal proportions by stomatal and non-stomatal controlled processes. Deposition towards foliage and forest is sustained also during night and winter when stomatal gas-exchange is low or absent. The non-stomatal portion of the flux was analysed further. The pattern of flux in time was found to be an overlap of the patterns of biological activity and presence of wetness in the environment. This was seen to occur both at the shoot and canopy scale. The presence of wetness enhanced the flux not only in the presence of liquid droplets but also during existence of a moisture film on the plant surfaces. The existence of these films and their relation to the ozone sinks was determined by simultaneous measurements of leaf surface wetness and ozone flux. The results seem to suggest ozone would be reacting at the foliage surface and the reaction rate would be mediated by the presence of surface wetness. Alternative mechanisms were discussed, including nocturnal stomatal aperture and emission of reactive volatile compounds. The prediction of the total flux could thus be based on a combination of a model of stomatal behaviour and a model of water absorption on the foliage surfaces. The concepts behind the division of stomatal and non-stomatal sinks were reconsidered. This study showed that it is theoretically possible that a sink located before or near the stomatal aperture prevents or diminishes the diffusion of ozone towards the intercellular air space of the mesophyll. This obstacle to stomatal diffusion happens only under certain conditions, which include a very low presence of reaction sites in the mesophyll, an extremely strong sink located on the outer surfaces or stomatal pore. The relevance, or existence, of this process in natural conditions would need to be assessed further. Potentially strong reactions were considered, including dissolved sulphate, volatile organic compounds, and apoplastic ascorbic acid. Information on the location and the relative abundance of these compounds would be valuable. The highest total flux towards the foliage and forest happens when both the plant activity and ambient moisture are high. The highest uptake into the interior of the foliage happens at large stomatal apertures, provided that scavenging reactions located near the stomatal pore are weak or non-existent. The discussion covers the methodological developments of this study, the relevance of the different controlling factors of ozone flux, the partition amongst its component, and the possible mechanisms of non-stomatal uptake.
Resumo:
Discusses a research charter undertaken by the Queensland Department of Primary Industries which showed that bycatch in the state's scallop fishery can be reduced by 78% as a result of using bycatch reduction devices (BRD). Absence of adverse reaction in the catch rate of commercial size scallops; Effect of turtle excluder device and BRD on the catch rate of total bycatch.
Resumo:
'Honey Gold' mango is a relatively new cultivar in Australia, with an appealing skin colour and a sweet fibre-free flesh. However, fruit can develop 'under-skin browning' (USB), which appears several days after packing as a distinct 'bruise'-like discolouration under the epidermis and can affect large areas of the fruit surface. We investigated the anatomy of USB and the impact of post-harvest fruit handling conditions on the disorder. Starch accumulated around the resin canals and discoloured cells in the affected area, with no visible change to the cuticle or epidermis. Delays of 1 d at ambient temperature (27 degrees - 35 degrees C) before packing, and 2 d at 18 degrees - 20 degrees C (after packing), before placing fruit at 12 degrees - 14 degrees C and road transportation, reduced the incidence of USB by 83% compared to placing fruit at 12 degrees - 14 degrees C within 13 h of picking. The incidence of USB was 88 100% higher in fruit that were cooled to 12 degrees - 14 degrees C within 13 h of picking, then commercially road-freighted for 4 d at 12 degrees - 14 degrees C, than in fruit held under similar temperature conditions, but not road-freighted. Wrapping each fruit in bubble-wrap to minimise direct contact with other fruit, with the plastic insert, or with the cardboard tray, reduced the incidence of USB by 84% after road-freight compared to not using bubble-wrap. These results suggest that USB is a unique disorder of mango skin associated with a rapid post-harvest reduction in temperature, from high ambient temperatures to 12 degrees - 14 degrees C, and with physical damage during road-freight.
Resumo:
The off-site transport of agricultural chemicals, such as herbicides, into freshwater and marine ecosystems is a world-wide concern. The adoption of farm management practices that minimise herbicide transport in rainfall-runoff is a priority for the Australian sugarcane industry, particularly in the coastal catchments draining into the World Heritage listed Great Barrier Reef (GBR) lagoon. In this study, residual herbicide runoff and infiltration were measured using a rainfall simulator in a replicated trial on a brown Chromosol with 90–100% cane trash blanket cover in the Mackay Whitsunday region, Queensland. Management treatments included conventional 1.5 m spaced sugarcane beds with a single row of sugarcane (CONV) and 2 m spaced, controlled traffic sugarcane beds with dual sugarcane rows (0.8 m apart) (2mCT). The aim was to simulate the first rainfall event after the application of the photosynthesis inhibiting (PSII) herbicides ametryn, atrazine, diuron and hexazinone, by broadcast (100% coverage, on bed and furrow) and banding (50–60% coverage, on bed only) methods. These events included heavy rainfall 1 day after herbicide application, considered a worst case scenario, or rainfall 21 days after application. The 2mCT rows had significantly (P < 0.05) less runoff (38%) and lower peak runoff rates (43%) than CONV rows for a rainfall average of 93 mm at 100 mm h−1 (1:20 yr Average Return Interval). Additionally, final infiltration rates were higher in 2mCT rows than CONV rows, with 72 and 52 mm h−1 respectively. This resulted in load reductions of 60, 55, 47, and 48% for ametryn, atrazine, diuron and hexazinone from 2mCT rows, respectively. Herbicide losses in runoff were also reduced by 32–42% when applications were banded rather than broadcast. When rainfall was experienced 1 day after application, a large percentage of herbicides were washed off the cane trash. However, by day 21, concentrations of herbicide residues on cane trash were lower and more resistant to washoff, resulting in lower losses in runoff. Consequently, ametryn and atrazine event mean concentrations in runoff were approximately 8 fold lower at day 21 compared with day 1, whilst diuron and hexazinone were only 1.6–1.9 fold lower, suggesting longer persistence of these chemicals. Runoff collected at the end of the paddock in natural rainfall events indicated consistent though smaller treatment differences to the rainfall simulation study. Overall, it was the combination of early application, banding and controlled traffic that was most effective in reducing herbicide losses in runoff. Crown copyright © 2012
Resumo:
Based on socio-emotional selectivity and self-categorization theories, we developed and tested a model on how the interplay between employee age and opportunities for generativity and development predicts age bias and turnover intentions via intergenerational contact quality in the workplace. We hypothesized indirect effects of opportunities for generativity on outcomes through intergenerational contact quality among older workers only, whereas we expected that the indirect effects of opportunities for development are stronger for young compared with older workers. Data came from 321 employees in Belgium who responded to an online questionnaire. Results showed that age moderated the relationships of opportunities for generativity and development with intergenerational contact quality consistent with the expected patterns. Furthermore, age moderated the indirect effects of opportunities for generativity and development on age bias through intergenerational contact quality, but not on turnover intentions. Implications for future research and practical suggestions for managing intergenerational contact at work are discussed.