948 resultados para receptors, adrenergic


Relevância:

30.00% 30.00%

Publicador:

Resumo:

The inhibition of sodium intake by increased plasma osmolarity may depend on inhibitory mechanisms present in the lateral parabrachial nucleus. Activation of alpha(2)-adrenergic receptors in the lateral parabrachial nucleus is suggested to deactivate inhibitory mechanisms present in this area increasing fluid depletion-induced 0.3 M NaCl intake. Considering the possibility that lateral parabrachial nucleus inhibitory mechanisms are activated and restrain sodium intake in animals with increased plasma osmolarity, in the present study we investigated the effects on water and 0.3 M NaCl intake produced by the activation of alpha(2)-adrenergic receptors in the lateral parabrachial nucleus in rats with increased plasma osmolarity. Male Holtzman rats with stainless steel cannulas implanted bilaterally into the lateral parabrachial nucleus were used. One hour after intragastric 2 M NaCl load (2 ml), bilateral injections of moxonidine (alpha(2)-adrenergic/imidazoline receptor agonist, 0.5 nmol/0.2 mu l, n=10) into the lateral parabrachial nucleus induced a strong ingestion of 0.3 M NaCl intake (19.1 +/- 5.5 ml/2 h vs. vehicle: 1.8 +/- 0.6 ml/2 h), without changing water intake (15.8 +/- 3.0 ml/2 h vs. vehicle: 9.3 +/- 2.0 ml/2 h). However, moxonidine into the lateral parabrachial nucleus in satiated rats not treated with 2 M NaCl produced no change on 0.3 M NaCl intake. The pre-treatment with RX 821002 (alpha(2)-adrenergic receptor antagonist, 20 nmol/0.2 mu l) into the lateral parabrachial nucleus almost abolished the effects of moxonidine on 0.3 M NaCl intake (4.7 +/- 3.4 ml/2 h). The present results suggest that alpha(2)-adrenergic receptor activation in the lateral parabrachial nucleus blocks inhibitory mechanisms, thereby allowing ingestion of hypertonic NaCl under conditions of extracellular hyperosmolarity. We suggest that during cell dehydration, circuits subserving sodium appetite are activated, but at the same time strongly inhibited through the lateral parabrachial nucleus. (c) 2006 IBRO. Published by Elsevier Ltd. All rights reserved.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The present experiments were conducted to investigate die role of the alpha(1A)-, alpha(1B)-, beta(1)-, beta(2)-adrenoceptors, and the effects of losartan and CGP42112A (selective ligands of the AT(1) and AT(2) angiotensin receptors, respectively) on the water and sodium intake elicited by paraventricular nucleus (PVN) injection of adrenaline. Male Holtzman rats with a stainless steel cannula implanted into the PVN were used. The ingestion of water and sodium was determined in separate groups submitted to water deprivation or sodium depletion with the diuretic furosemide (20 mg/rat). 5-Methylurapidil (an alpha(1A)-adrenergic antagonist) and ICI-118,551 (a beta(2)-adrenergic antagonist) injected into the PVN produced a dose-dependent increase, whereas cyclazosin (an alpha(1B)-adrenergic antagonist) and atenolol (a beta(1)-adrenergic antagonist) do not affect the inhibitory effect of water intake induced by adrenaline. on the other hand, the PVN administration of adrenaline increased the sodium intake in a dose-dependent manner. Previous injection of the alpha(1A) and beta(1) antagonists decreased, whereas injection of the alpha(1B) and beta(2) antagonists increased the salt intake induced by adrenaline. In rats with several doses of adrenaline into PVN, the previous administration of losartan increased in a dose-dependent manner the inhibitory effect of adrenaline and decreased the salt intake induced by adrenaline, while PVN CGP42112A was without effect. These results indicate that both appetites are mediated primarily by brain AT(1) receptors. However, the doses of losartan were more effective when combined with the doses of CGP42112A than given alone p < 0.05, suggesting that the water and salt intake effects of PVN adrenaline may involve activation of multiple angiotensin II (ANG II) receptors subtypes. (C) 2003 Elsevier B.V. All rights reserved.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Losartan, an AT1 angiotensin II (ANG II) receptor non-peptide antagonist, induces an increase in mean arterial pressure (MAP) when injected intracerebroventricularly (icv) into rats. The present study investigated possible effector mechanisms of the increase in MAP induced by icv losartan in unanesthetized rats. Male Holtzman rats (280-300 g, N = 6/group) with a cannula implanted into the anterior ventral third ventricle received an icv injection of losartan (90 µg/2 µl) that induced a typical peak pressor response within 5 min. In one group of animals, this response to icv losartan was completely reduced from 18 ± 1 to 4 ± 2 mmHg by intravenous (iv) injection of losartan (2.5-10 mg/kg), and in another group, it was partially reduced from 18 ± 3 to 11 ± 2 mmHg by iv prazosin (0.1-1.0 mg/kg), an alpha1-adrenergic antagonist (P<0.05). Captopril (10 mg/kg), a converting enzyme inhibitor, injected iv in a third group inhibited the pressor response to icv losartan from 24 ± 3 to 7 ± 2 mmHg (P<0.05). Propranolol (10 mg/kg), a ß-adrenoceptor antagonist, injected iv in a fourth group did not alter the pressor response to icv losartan. Plasma renin activity and serum angiotensin-converting enzyme activity were not altered by icv losartan in other animals. The results suggest that the pressor effect of icv losartan depends on angiotensinergic and alpha1-adrenoceptor activation, but not on increased circulating ANG II.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Non-adrenergic ligands that bind to imidazoline receptors (I-R), a selective ligand that binds to alpha2-adrenoceptors (alpha2-AR) and mixed ligands that bind to both receptors were tested for their action on water intake behavior of 24-h water-deprived rats. All drugs were injected into the third cerebral ventricle. Except for agmatine (80 nmol), mixed ligands binding to I-R/alpha2-AR such as guanabenz (40 nmol) and UK 14304 (20 nmol) inhibited water intake by 65% and up to 95%, respectively. The selective non-imidazoline alpha2-AR agonist, alpha-methylnoradrenaline, produced inhibition of water intake similar to that obtained with guanabenz, but at higher doses (80 nmol). The non-adrenergic I-R ligands histamine (160 nmol, mixed histaminergic and imidazoline ligand) and imidazole-4-acetic acid (80 nmol, imidazoline ligand) did not alter water intake. The results show that selective, non-imidazoline alpha2-AR activation suppresses water intake, and suggest that the action on imidazoline sites by non-adrenergic ligands is not sufficient to inhibit water intake.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)

Relevância:

30.00% 30.00%

Publicador:

Resumo:

1. The aim of the present study was to examine the effects of long-term nitric oxide (NO) blockade on contractions of the rat ileum induced by muscarinic agonists.2. Male Wistar rats received the NO synthesis inhibitor N (G) -nitro-l-arginine methyl ester (l-NAME; 20 mg/rat per day) in drinking water for 7, 15, 30 and 60 days. Concentration-responses curves to methacholine and carbachol were obtained and pEC(50) values were calculated. Saturation binding assays were performed in membranes prepared from rat ileum after 60 days of l-NAME treatment and the dissociation constant (K-D ) and maximal number of binding sites (B-max ) were determined by Scatchard analysis.3. The NO synthase activity of the ileum was markedly reduced in all l-NAME-treated groups. At 60 days after l-NAME treatment, a significant increase in the potency of methacholine (fourfold) and carbachol (threefold) was observed. In binding studies, we found a significant increase in B-max for [(3) H]-quinuclidinyl benzilate of approximately 57% in the l-NAME treated group without any significant change in K-D values. The contractile response to methacholine was not modified by the soluble guanylate cyclase inhibitor 1H-[1,2,4]oxadiazolo-[4,3-a]quinoxalin-1-one (3 mumol/L). No morphological alterations in the rat ileum were observed in l-NAME-treated rats.4. Our findings suggest that treatment with l-NAME for 60 days induces a marked increase in the potency of methacholine and carbachol, as well as an increase in receptor number in the rat ileum.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

We evaluated the potency of isoproterenol, carbachol, pilocarpine and calcitonin gene-related peptide (CGRP) in the rat right atria at 30, 60 and 90 days after neonatal capsaicin treatment. Neonatal rats were pretreated on the second day of life with capsaicin (50 mg/kg). The capsaicin pretreatment caused a five-fold rightward shift at the pEC(50) level on the concentration-response curves to isoproterenol in 30-day-old rats. Propranolol (10 mg/kg, given 15 min prior to capsaicin treatment) prevented this subsensitivity. No changes in the potency of isoproterenol were observed at 60 and 90 days after capsaicin pretreatment. The potency and maximal responses of CGRP in the right atria in 30-day-old rats were significantly higher than in 60- and 90-day-old rats; however, no differences were found between control and capsaicin groups. The potency and maximal responses to carbachol and pilocarpine were not changed in all groups. The neonatal capsaicin treatment reduced by about 74% the CGRP content in the heart in all groups. In summary, capsaicin treatment in newborn rats produces a desensitization of chronotropic response mediated by beta-adrenoceptors in isolated right atria from 30-day-old rats possibly due to a massive release of catecholamines. (C) 2002 Elsevier B.V. Ireland Ltd. All rights reserved.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Recent studies have shown the existence of two important inhibitory mechanisms for the control of NaCl and water intake: one mechanism involves serotonin in the lateral parabrachial nucleus (LPBN) and the other depends on alpha(2)-adrenergic/imidazoline receptors probably in the forebrain areas. In the present study we investigated if alpha(2)-adrenergic/imidazoline and serotonergic inhibitory mechanisms interact to control NaCl and water intake. Male Holtzman rats with cannulas implanted simultaneously into the lateral ventricle (LV) and bilaterally into the LPBN were used. The ingestion of 0.3 M NaCl and water was induced by treatment with the diuretic furosemide (10 mg/kg of body weight)+the angiotensin converting enzyme inhibitor captopril (5 mg/kg) injected subcutaneously 1 h before the access of rats to water and 0.3 M NaCl. Intracerebroventricular (i.c.v.) injection of the alpha(1)-adrenergic/imidazoline agonist clonidine (20 nmol/l RI) almost abolished water (1.6 +/- 1.2, vs. vehicle: 7.5 +/- 2.2 ml/2 h) and 0.3 M NaCl intake (0.5 +/- 0.3, vs. vehicle: 2.2 0.8 ml/2 h). Similar effects were produced by bilateral injections of the 5HT(2a/2b) serotonergic agonist 2,5-dimetoxy-4-iodoamphetamine (DOI, 5 mug/0.2 mul each site) into the LPBN on water (3.6 +/- 0.9 ml/2 h) and 0.3 M NaCl intake (0.4 +/- 0.2 m1/2 h). Injection of the (alpha(2)-adrenergic/imidazoline antagonist idazoxan (320 nmol) i.c.v. completely blocked the effects of clonidine on water (8.4 +/- 1.5 ml/2 h) and NaCl intake (4.0 +/- 1.2 ml/2 h), but did not change the effects of LPBN injections of DOI on water (4.2 +/- 1.0 ml/2 h) and NaCl intake (0.7 +/- 0.2 ml/2 h). Bilateral injections of methysergide (4 mug/0.2 mul each site) into the LPBN increased 0.3 M NaCl intake (6.4 +/- 1.9 ml/2 h), not water intake. The inhibitory effect of i.c.v. clonidine on water and 0.3 M NaCl was still present after injections of methysergide into the LPBN (1.5 +/- 0.8 and 1.7 +/- 1.4 ml/2 h, respectively). The results show that the inhibitory effects of the activation of a,-adrenergic/imidazoline receptors in the forebrain are still present after blockade of the LPBN serotonergic mechanisms and vice versa for the activation of serotonergic mechanisms of the LPBN. Therefore, each system may act independently to inhibit NaCl and water intake. (C) 2002 Elsevier B.V. B.V. All rights reserved.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Male rats received intracerebroventricular (ICV) renin (600 ng) or daily subcutaneous injections of deoxycorticosterone (5 mg) to induce 3% NaCl and water intake. Noradrenaline (NOR; 40-160 nmol) and clonidine (CLO; 5-20 nmol) injected ICV. induced 70 to 100% inhibition of the intakes. Phenylephrine (PHE; 40-160 nmol) injected ICV induced 60 to 95% inhibition of the intakes. NOR and PHE induced a stronger inhibition on the 3% NaCl intake induced by renin than on the intake induced by deoxycorticosterone (DOC), and CLO did the opposite. CLO was always more effective than PHE to induce inhibition of the intakes. The results suggest that NOR inhibits hormone (angiotensin II, aldosterone)-induced NaCl intake by acting mainly on alpha(2)-adrenergic receptors.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

We previously reported that truncation of the N-terminal 79 amino acids of alpha(1D)-adrenoceptors (Delta(1-79)alpha(1D)-ARs) greatly increases binding site density. In this study, we determined whether this effect was associated with changes in alpha(1D)-AR subcellular localization. Confocal imaging of green fluorescent protein (GFP)-tagged receptors and sucrose density gradient fractionation suggested that full-length alpha(1D)-ARs were found primarily in intracellular compartments, whereas Delta(1-79)alpha(1D)-ARs were translocated to the plasma membrane. This resulted in a 3- to 4-fold increase in intrinsic activity for stimulation of inositol phosphate formation by norepinephrine. We determined whether this effect was transplantable by creating N-terminal chimeras of alpha(1)-ARs containing the body of one subtype and the N terminus of another (alpha(1A) NT-D, alpha(1B) NT-D, alpha(1D) NT-A, and alpha(1D)NT-B). When expressed in human embryonic kidney 293 cells, radioligand binding revealed that binding densities of alpha(1A)- or alpha(1B)-ARs containing the alpha(1D)-N terminus decreased by 86 to 93%, whereas substitution of alpha(1A)- or alpha(1B)-N termini increased alpha(1D)-AR binding site density by 2- to 3-fold. Confocal microscopy showed that GFP-tagged alpha(1D)NT-B-ARs were found only on the cell surface, whereas GFP-tagged alpha(1B)NT-D-ARs were completely intracellular. Radioligand binding and confocal imaging of GFP-tagged alpha(1D)- and Delta(1-79)alpha(1D)-ARs expressed in rat aortic smooth muscle cells produced similar results, suggesting these effects are generalizable to cell types that endogenously express alpha(1D)-ARs. These findings demonstrate that the N-terminal region of alpha(1D)-ARs contain a transplantable signal that is critical for regulating formation of functional bindings, through regulating cellular localization.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

In the present study, noradrenaline (NOR, alpha-non-specific adrenergic agonist), clonidine (CLO, alpha(2)), phenylephrine (PHE, alpha(1)) or isoproterenol (ISO, beta-agonist) was injected in the medial septal area (MSA) of water-deprived, sodium-deplete or food-deprived rats. NOR (80, 160 nmol) inhibited the intake of 3% NaCl, water deprivation-induced and meal-associated water intake. Food deprivation-induced food intake and 10% sucrose intake were not altered by NOR. CLO (10, 20, 30, 40 nmol) inhibited (80-100% inhibition compared to control during 60 min) the intake of 3% NaCl, water deprivation-induced and meal-associated water intake. CLO had a weaker inhibition on food and 10% sucrose intake (30-50% less than the control during 60 and 15 min, respectively). PHE (160 nmol) inhibited 3% NaCl intake and 10% sucrose intake (30% less than the control for 15-30 min). ISO (160 nmol) did not after water or 3% NaCl intake. NOR induced an increase, CLO and ISO induced a decrease, and PHE no alteration in mean arterial pressure. NOR did not alter water or 3% NaCl intake when injected unilaterally into the caudate nucleus. The results suggest that NOR injected in the MSA acts on alpha(2)-adrenergic receptors inducing a specific inhibition of 3% NaCl and water intake. (C) 1997 Elsevier B.V.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

We studied the effect of the alpha(1)- and alpha(2)-adrenergic receptors of the lateral hypothalamus (LH) on the control of water intake induced by injection of carbachol into the medial septal area (MSA) of adult male Holtzman rats (250-300 g) implanted with chronic stainless steel cannulae into the LH and MSA. The volume of injection was always 1 mu l and was injected over a period of 30-60 s. For control, 0.15 M NaCl was used. Clonidine (20 nmol) but not phenylephrine (160 nmol) injected into the LH inhibited water intake induced by injection of carbachol (2 nmol) into the MSA, from 5.4 +/- 1.2 ml/h to 0.3 +/- 0.1 and 3.0 +/- 0.9 ml/h, respectively (N = 26). When we injected yohimbine (80 nmol) + clonidine (20 nmol) and prazosin (40 nmol) + clonidine (20 nmol) into theLH, water intake induced by injection of carbachol into the MSA was inhibited from 5.4 +/- 1.2 ml/h to 0.8 +/- 0.5 and 0.3 +/- 0.2 ml/h, respectively (N = 19). Water intake induced by carbachol (2 nmol) injected into the MSA was decreased by previous injection of yohimbine (80 nmol) + phenylephrine (160 nmol) and prazosin (40 nmol) + phenylephrine (l60 nmol) from 5.4 +/- 1.2 ml/h to 1.0 +/- 0.7 and 1.8 +/- 0.8 ml/h, respectively (N = 16). The cannula reached both the medial septal area in its medial portion and the lateral hypothalamus. It has been suggested that the different pathways for induction of drinking converge on a final common pathway. Thus, adrenergic stimulation of alpha(2),-adrenoceptors ofLH can influence this final common pathway.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Cholinergic and adrenergic agonists and antagonists were injected directly into the subfornical organ (SFO), via implanted cannulae, and the volume of water ingested was recorded over a period of 1 hour after injection. Application of 2 nmol carbachol caused intense water intake in 100% of the animals (8.78±0.61 ml), with a very short intake latency. When the 2 nmol carbachol dose was preceded by increased doses of atropine, a progressive reduction in water intake was observed, with complete blockage of the thirst-inducing response to carbachol at the 20 nmol dose level with atropine. Followed by several doses of hexamethonium, the water intake caused by application of 2 nmol carbachol was reduced, although the response was not totally blocked. Injection of 80 nmol of nicotine had a significant thirst-inducing inducing effect in 50% of the animals studied (1.06±0.18 ml) and increase in water intake was further reduced by application of increased doses of hexamethonium. Raising the dose levels of noradrenaline into th SFO caused an increase in water intake although to a lesser degree than was observed after carbachol injection. When the 40 nmol dose of noradrenaline was preceded by increased doses of propranolol (5 to 40 nmol), there was a gradual reduction in water intake, with total blockage at the 40 nmol dose. Application of phentolamine in doses of 10 to 80 nmol caused no reduction in water intake after 40 nmol of noradrenaline. Application of isoproterenol at doses from 20 to 160 nmol into the SFO caused a dosedependent increase in water intake which was blocked by previous applications of propranolol. These results support the hypothesis that the water intake caused by chemical stimulation of the SFO is mainly due to muscarinic cholinergic receptors, although the influence of nicotinic receptors or participation of adrenergic mediation should not be ruled out. © 1984.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

β-Adrenoreceptor blockade is reported to impair endurance, power output and work capacity in healthy subjects and patients with hypertension. The purpose of this study was to investigate the effect in eighth athletic males of an acute β-adrenergic blockade with propranolol on their individual power output corresponding to a defined lactate minimum (LM). Eight fit males (cyclist or triathlete) performed a protocol to determine the power output corresponding to their individual LM (defined from an incremental exercise test after a rapidly induced exercise lactic acidosis). This protocol was performed twice in a double-blind randomized order by each athlete first ingesting propranolol (80mg) and in a second trial a placebo, 120 minutes respectively prior to the test sequence. The blood lactate concentration obtained 7 minutes after anaerobic exercise (a Wingate test) was significantly lower after acute β-adrenergic blockade (8.6 ± 1.6mM) than under the placebo condition (11.7 ± 1.6mM). The work rate at the LM was lowered from 215.0 ± 18.6 to 184.0 ± 18.6 watts and heart rate at the LM was reduced from 165 ± 1.5 to 132 ± 2.2 beats/minute as a result of the blockade. There was a non-significant correlation (r = 0.29) between the power output at the LM with and without acute β-adrenergic blockade. In conclusion, since the intensity corresponding to the LM is related to aerobic performance, the results of the present study, are able to explain in part, the reduction in aerobic power output produced during β-adrenergic blockade.