957 resultados para reactive oxygen species (ROS)


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Beta cell destruction in type 1 diabetes (TID) is associated with cellular oxidative stress and mitochondrial pathway of cell death. The aim of this study was to determine whether oxidative stress and mitochondrial dysfunction are present in T1D model (non-obese diabetic mouse, NOD) and if they are related to the stages of disease development. NOD mice were studied at three stages: non-diabetic, pre-diabetic, and diabetic and compared with age-matched Balb/c mice. Mitochondria respiration rates measured at phosphorylating and resting states in liver and soleus biopsies and in isolated liver mitochondria were similar in NOD and Balb/c mice at the three disease stages. However, NOD liver mitochondria were more susceptible to calcium-induced mitochondrial permeability transition as determined by cyclosporine-A-sensitive swelling and by decreased calcium retention capacity in all three stages of diabetes development. Mitochondria H2O2 production rate was higher in non-diabetic, but unaltered in pre-diabetic and diabetic NOD mice. The global cell reactive oxygen species (ROS), but not specific mitochondria ROS production, was significantly increased in NOD lymphomononuclear and stem cells in all disease stages. In addition, marked elevated rates of 2',7'-dichlorodihydrofluorescein (H2DCF) oxidation were observed in pancreatic islets from non-diabetic NOD mice. Using matrix-assisted laser desorption/ionization (MALDI) mass spectrometry (MS) and lipidomic approach, we identified oxidized lipid markers in NOD liver mitochondria for each disease stage, most of them being derivatives of diacylglycerols and phospholipids. These results suggest that the cellular oxidative stress precedes the establishment of diabetes and may be the cause of mitochondrial dysfunction that is involved in beta cell death.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The over-production of reactive oxygen species (ROS) can cause oxidative damage to a large number of molecules, including DNA, and has been associated with the pathogenesis of several disorders, such as diabetes mellitus (DM), dyslipidemia and periodontitis (PD). We hypothesise that the presence of these diseases could proportionally increase the DNA damage. The aim of this study was to assess the micronucleus frequency (MNF), as a biomarker for DNA damage, in individuals with type 2 DM, dyslipidemia and PD. One hundred and fifty patients were divided into five groups based upon diabetic, dyslipidemic and periodontal status (Group 1 - poor controlled DM with dyslipidemia and PD; Group 2 - well-controlled DM with dyslipidemia and PD; Group 3 - without DM with dyslipidemia and PD; Group 4 - without DM, without dyslipidemia and with PD; and Group 5 - without DM, dyslipidemia and PD). Blood analyses were carried out for fasting plasma glucose, HbA1c and lipid profile. Periodontal examinations were performed, and venous blood was collected and processed for micronucleus (MN) assay. The frequency of micronuclei was evaluated by cell culture cytokinesis-block MN assay. The general characteristics of each group were described by the mean and standard deviation and the data were submitted to the Mann-Whitney, Kruskal-Wallis, Multiple Logistic Regression and Spearman tests. The Groups 1, 2 and 3 were similarly dyslipidemic presenting increased levels of total cholesterol, low density lipoprotein cholesterol and triglycerides. Periodontal tissue destruction and local inflammation were significantly more severe in diabetics, particularly in Group 1. Frequency of bi-nucleated cells with MN and MNF, as well as nucleoplasmic bridges, were significantly higher for poor controlled diabetics with dyslipidemia and PD in comparison with those systemically healthy, even after adjusting for age, and considering Bonferroni's correction. Elevated frequency of micronuclei was found in patients affected by type 2 diabetes, dyslipidemia and PD. This result suggests that these three pathologies occurring simultaneously promote an additional role to produce DNA impairment. In addition, the micronuclei assay was useful as a biomarker for DNA damage in individuals with chronic degenerative diseases.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

High phosphate (Pi) levels and extracellular matrix (ECM) accumulation are associated with chronic kidney disease progression. However, how high Pi levels contribute to ECM accumulation in mesangial cells is unknown. The present study investigated the role and mechanism of high Pi levels in ECM accumulation in immortalized human mesangial cells (iHMCs). iHMCs were exposed to normal (0.9 mM) or increasing Pi concentrations (2.5 and 5 mM) with or without diferent blockers or activators. NOX4, phosphorylated AMPK (p-AMPK), phosphorylated SMAD3 (p-SMAD3), fibronectin (F/N), collagen IV (C-IV) and alpha-smooth muscle actin (α-SMA) expression was assessed via western blot and immunofluorescence. Lucigenin-enhanced chemiluminescence, and dihydroethidium (DHE) assessed NADPH oxidase activity and superoxide (SO), respectively. In iHMCs, a Pi transporter blocker (PFA) abrogated high Pi-induced AMPK inactivation, increase in NADPH oxidase-induced reactive oxygen species (ROS) levels, NOX4, p-SMAD3, α-SMA and C-IV expression. AMPK activation by AICAR, NOX4 silencing or NADPH oxidase blocker prevented high Pi-induced DHE levels, p-SMAD3, F/N, C-IV and α-SMA expression. AMPK inactivation with NOX4-induced ROS formation and transforming growth factor ß-1 (TGFß-1) signaling activation mediates high Pi-induced ECM accumulation in iHMCs. Maneuvers increasing AMPK or reducing NOX4 activity may contribute to renal protection under hyperphosphatemia.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Neutrophils (PMN) play a central role in host defense against the neglected fungal infection paracoccidioidomycosis (PCM), which is caused by the dimorphic fungus Paracoccidioides brasiliensis (Pb). PCM is of major importance, especially in Latin America, and its treatment relies on the use of antifungal drugs. However, the course of treatment is lengthy, leading to side effects and even development of fungal resistance. The goal of the study was to use low-level laser therapy (LLLT) to stimulate PMN to fight Pb in vivo. Swiss mice with subcutaneous air pouches were inoculated with a virulent strain of Pb or fungal cell wall components (Zymosan), and then received LLLT (780 nm; 50 mW; 12.5 J/cm2; 30 seconds per point, giving a total energy of 0.5 J per point) on alternate days at two points on each hind leg. The aim was to reach the bone marrow in the femur with light. Non-irradiated animals were used as controls. The number and viability of the PMN that migrated to the inoculation site was assessed, as well as their ability to synthesize proteins, produce reactive oxygen species (ROS) and their fungicidal activity. The highly pure PMN populations obtained after 10 days of infection were also subsequently cultured in the presence of Pb for trials of protein production, evaluation of mitochondrial activity, ROS production and quantification of viable fungi growth. PMN from mice that received LLLT were more active metabolically, had higher fungicidal activity against Pb in vivo and also in vitro. The kinetics of neutrophil protein production also correlated with a more activated state. LLLT may be a safe and non-invasive approach to deal with PCM infection.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Estresse oxidativo é o termo geralmente utilizado para descrever os danos causados pelo desequilíbrio entre pró-oxidantes e antioxidantes no organismo. O aumento no consumo de O2 induzido pelo exercício físico está associado ao aumento das espécies reativas de oxigênio (EROs) sendo estas indutoras do estresse oxidativo. Embora as evidências indiquem um provável efeito inibitório da fototerapia com diodos emissores de luz (LEDT) sobre a produção das EROs, não existem estudos observando tal efeito em atletas. Este estudo preliminar destina-se a verificar os efeitos da aplicação de LEDT previamente ao exercício de alta intensidade sobre a peroxidação lipídica, mensurada através dos níveis sanguíneos de substâncias reativas ao ácido tiobarbitúrico (TBARS). Todos os seis atletas de voleibol do sexo masculino foram submetidos às duas situações: aplicação de LEDT efetiva e aplicação de LEDT placebo. O desempenho no protocolo de exercício adotado não revelou diferença (p > 0,05) entre as duas situações nas variáveis potência pico, potência média e índice de fadiga. Os resultados relacionados com a peroxidação lipídica foram: na situação LEDT efetiva, não foi possível observar diferença estatisticamente significante (p > 0,05) entre os níveis pré e pós-exercício (6,98 ± 0,81 e 7,02 ± 0,47nmol/mL); na situação LEDT (LBP) placebo, houve diferença estatisticamente significante (p = 0,05) entre os valores pré e pós-exercício (7,09 ± 1,28 e 8,43 ± 0,71nmol/mL). Tais resultados demonstram que a aplicação efetiva de LEDT parece ser eficaz no controle da peroxidação lipídica em atletas submetidos a exercício intenso

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Evidências têm demonstrado que distúrbios do metabolismo são comuns em células tumorais, levando ao aumento do estresse oxidativo. A elevação na produção de espécies reativas de oxigênio (EROs) associada à baixa atividade antioxidante tem sido relacionada a vários tipos de câncer. O selênio, micronutriente antioxidante, pode funcionar como um agente antimutagênico, prevenindo transformações malignas de células normais. Realizou-se um levantamento bibliográfico no período 2000 a 2009 mediante consulta à base de dados PubMed (National Library of Medicine´s Medline Biomedical Literature, USA), selecionando-se 39 artigos que avaliaram a relação entre câncer, estresse oxidativo e suplementação com selênio. O efeito protetor desse mineral é especialmente associado à sua presença na glutationa peroxidase e na tioredoxina redutase, enzimas protetoras do DNA e outros componentes celulares contra o dano oxidativo causado pelas EROs. Vários estudos têm demonstrado a expressão reduzida destas enzimas em diversos tipos de câncer, principalmente quando associados a uma baixa ingestão de selênio, que pode acentuar os danos causados. A suplementação de selênio parece ocasionar redução do risco de alguns tipos de câncer diminuindo o estresse oxidativo e o dano ao DNA. No entanto, mais estudos são necessários para esclarecer as doses de selênio adequadas para cada situação (sexo, localização geográfica e tipo de câncer)

Relevância:

100.00% 100.00%

Publicador:

Resumo:

A growing body of evidence has suggested that reactive oxygen species (ROS) may play an important role in the physiopathology of depression. Evidence has pointed to the beta-carboline harmine as a potential therapeutic target for the treatment of depression. The present study we evaluated the effects of acute and chronic administration of harmine (5, 10 and 15 mg/kg) and imipramine (10, 20 and 30 mg/kg) or saline in lipid and protein oxidation levels and superoxide dismutase (SOD) and catalase (CAT) activities in rat prefrontal cortex and hippocampus. Acute and chronic treatments with imipramine and harmine reduced lipid and protein oxidation, compared to control group in prefrontal cortex and hippocampus. The SOD and CAT activities increased with acute and chronic treatments with imipramine and harmine, compared to control group in prefrontal cortex and hippocampus. In conclusion, our results indicate positive effects of imipramine antidepressant and beta-carboline harmine of oxidative stress parameters, increasing SOD and CAT activities and decreasing lipid and protein oxidation.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The central role of reactive oxygen species (ROS) in osteoclast differentiation and in bone homeostasis prompted us to characterize the redox regulatory system of osteoclasts. In this report, we describe the expression and functional characterization of PAMM, a CXXC motif-containing peroxiredoxin 2-like protein expressed in bone marrow monocytes on stimulation with M-CSF and RANKL. Expression of wild-type (but not C to G mutants of the CXXC domain) PAMM in HEK293 cells results in an increased GSH/GSSG ratio, indicating a shift toward a more reduced environment. Expression of PAMM in RAW264.7 monocytes protected cells from hydrogen peroxide-induced oxidative stress, indicating that PAMM regulates cellular redox status. RANKL stimulation of RAW 264.7 cells caused a decrease in the GSH/GSSG ratio (reflecting a complementary increase in ROS). In addition, RANKL-induced osteoclast formation requires phosphorylation and translocation of NF-kappa B and c-Jun. In stably transfected RAW 264.7 cells, PAMM overexpression prevented the reduction of GSH/GSSG induced by RANKL. Concurrently, PAMM expression completely abolished RANKL-induced p100 NF-kappa B and c-Jun activation, as well as osteoclast formation. We conclude that PAMM is a redox regulatory protein that modulates osteoclast differentiation in vitro. PAMM expression may affect bone resorption in vivo and help to maintain bone mass. Antioxid. Redox Signal. 13, 27-37.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Background: Production of reactive oxygen species (ROS) due to chronic exposure to glucose has been associated with impaired beta cell function and diabetes. However, physiologically, beta cells are well equipped to deal with episodic glucose loads, to which they respond with a fine tuned glucose-stimulated insulin secretion (GSIS). In the present study, a systematic investigation in rat pancreatic islets about the changes in the redox environment induced by acute exposure to glucose was carried out. Methodology/Principal Findings: Short term incubations were performed in isolated rat pancreatic islets. Glucose dose- and time-dependently reduced the intracellular ROS content in pancreatic islets as assayed by fluorescence in a confocal microscope. This decrease was due to activation of pentose-phosphate pathway (PPP). Inhibition of PPP blunted the redox control as well as GSIS in a dose-dependent manner. The addition of low doses of ROS scavengers at high glucose concentration acutely improved beta cell function. The ROS scavenger N-acetyl-L-cysteine increased the intracellular calcium response to glucose that was associated with a small decrease in ROS content. Additionally, the presence of the hydrogen peroxide-specific scavenger catalase, in its membrane-permeable form, nearly doubled glucose metabolism. Interestingly, though an increase in GSIS was also observed, this did not match the effect on glucose metabolism. Conclusions: The control of ROS content via PPP activation by glucose importantly contributes to the mechanisms that couple the glucose stimulus to insulin secretion. Moreover, we identified intracellular hydrogen peroxide as an inhibitor of glucose metabolism intrinsic to rat pancreatic islets. These findings suggest that the intracellular adjustment of the redox environment by glucose plays an important role in the mechanism of GSIS.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Fatty acid (FA) may disturb the redox state of the cells not only by an increase in reactive oxygen species (ROS) generation but also due to a reduction in antioxidant enzyme activities. The effect of various FAs (palmitic, stearic, oleic, linoleic, gamma-linolenic and eicosapentaenoic acids (EPAs)) on Jurkat and Raji cells, (human T and B leukaemic cell lines was investigated). The following measurements were carried out: FA composition of the cells, cell proliferation and activities of catalase, glutathione peroxidase (GPx) and superoxide dismutase (SOD). The protective effect of alpha-tocopherol on cell death was also investigated. Each cell line presented a specific FA composition. All the tested ENS reduced catalase activity. The toxic effect of FA was abolished by the pre-incubation with physiological concentrations of alpha-tocopherol. The findings support the proposition that the increase in oxidative stress induced by FA partially occurs due to a reduction in catalase activity. In spite of the decrease in the enzyme activity, catalase protein and mRNA levels were not changed, suggesting a post-translational regulation. Copyright (C) 2007 John Wiley & Sons, Ltd.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Myocardial infarction (MI) has been associated with increases in reactive oxygen species (ROS). Exercise training (ET) has been shown to exert positive modulations on vascular function and the purpose of the present study was to investigate the effect of moderate ET on the aortic superoxide production index, NAD(P)H oxidase activity, superoxide dismutase activity and vasomotor response in MI rats. Aerobic ET was performed during 11 weeks. Myocardial infarction significantly diminished maximal exercise capacity, and increased vasoconstrictory response to norepinephrine, which was related to the increased activity of NAD(P)H oxidase and basal superoxide production. On the other hand, ET normalized the superoxide production mostly due to decreased NAD(P)H oxidase activity, although a minor SOD effect may also be present. These adaptations were paralleled by normalization in the vasoconstrictory response to norepinephrine. Thus, diminished ROS production seems to be an important mechanism by which ET mediates its beneficial vascular effects in the MI condition.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Although neurohumoral excitation is the hallmark of heart failure (HF), the mechanisms underlying this alteration are not entirely known. Abnormalities in several systems contribute to neurohumoral excitation in HF, including arterial and cardiopulmonary baroreceptors, central and peripheral chemoreceptors, cardiac chemoreceptors, and central nervous system abnormalities. Exercise intolerance is characteristic of chronic HF, and growing evidence strongly suggests that exercise limitation in patients with chronic HF is not due to elevated filling pressures or inadequate cardiac output during exercise, but instead due to skeletal myopathy. Several lines of evidence suggest that sympathetic excitation contributes to the skeletal myopathy of HF, since sympathetic activity mediates vasoconstriction at rest and during exercise likely restrains muscle blood flow, arteriolar dilatation, and capillary recruitment, leading to underperfused areas of working muscle, and areas of muscle ischemia, release of reactive oxygen species (ROS), and inflammation. Although controversial, either unmyelinated, metabolite-sensitive afferent fibers, and/or myelinated, mechanosensitive afferent fibers in skeletal muscle underlie the exaggerated sympathetic activity in HF. Exercise training has emerged as a unique non-pharmacological strategy for the treatment of HF. Regular exercise improves functional capacity and quality of life, and perhaps prognosis in chronic HF patients. Recent studies have provided convincing evidence that these benefits in chronic HF patients are mediated by significant reduction in central sympathetic outflow as a consequence of improvement in arterial and chemoreflex controls, and correction of central nervous system abnormalities, and increase in peripheral blood flow with reduction in cytokines and increase in mass muscle.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Objective: In patients who have undergone hemodialysis, large amounts of reactive oxygen species (ROS) are produced and, at higher concentrations, ROS are thought to be involved in the pathogenesis of cardiovascular disease. It has been proposed that selenium (Se) may exert an anti-atherogenic influence by reducing oxidative stress. The richest known food source of selenium is the Brazil nut (Bertholletia excelsa, family Lecythidaceae), found in the Amazon region. We evaluated the effect of Brazil nut supplementation on blood levels of Se and glutathione peroxidase (GSH-Px) activity in patients on hemodialysis. Methods: A total of 81 patients on hemodialysis (52.0 +/- 15.2 y old, average time on dialysis 82.3 +/- 91.4 mo, body mass index 24.9 +/- 4.4 kg/m(2)) from the RenalCor and RenalVida Clinics in Rio de Janeiro, Brazil, were studied. All patients received one nut (around 5 g, averaging 58.1 mu g Se/g) a day for 3 mo. The Se concentrations in the nuts and in plasma and erythrocytes were determined by atomic absorption spectrophotometry with hydride generation (Hitachi, Z-500). GSH-Px levels were measured using Randox commercial kits. Results: Plasma Se (18.8 +/- 17.4 mu g/L) and erythrocyte (72.4 +/- 37.9 mg/L) levels were below the normal, range before nut supplementation. After supplementation, the plasma level increased to 104.0 +/- 65.0 mu g/L and erythrocytes to 244.1 +/- 119.5 mg/L (P<0.0001). The activity of GSH-Px also increased after supplementation, from 46.6 +/- 14.9 to 55.9 +/- 23.6 U/g of hemoglobin (P<0.0001). Before supplementation, 11% of patients had GSH-Px activity below the normal range (27.5-73.6 U/g of hemoglobin). After supplementation, all patients showed GSH-Px activity within the normal range. Conclusion: The data revealed that the investigated patients presented Se deficiency and that the consumption of only one Brazil nut a day (5 g) during 3 mo was effective to increase the Se concentration and GSH-Px activity in these patients, thus improving their antioxidant status. (C) 2010 Elsevier Inc. All rights reserved.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The aim of this study was to determine the apoptotic pathways and mechanisms involved in electronegative LDL [LDL(-)]-induced apoptosis in RAW 264.7 macrophages and the role of Nrf2 in this process. Incubation of RAW 264 7 macrophages with LDL(-) for 24 11 resulted in dose-dependent cell death. Activated caspases were shown to be involved in the apoptosis induced by LDL(-): incubation with the broad caspase inhibitor z-VAD prevented apoptosis in LDL(-)-treated cells CD95 (Fas), CD95 ligand (FasL). CD36 and the tumor necrosis factor (TNF) ligand Tnfsf10 were overexpressed in LDL(-)-treated cells However, Bax, Bcl-2 and Mcl-1 protein levels remained unchanged after LDL(-) treatment. LDL(-) promoted hyperpolarization of the mitochondrial membrane, elevated reactive oxygen species (ROS) production and translocation of Nrf2 to the nucleus, a process absent in cells treated with native LDL Elicited peritoneal macrophages from Nrf2-deficient mice exhibited an elevated apoptotic response after challenge with LDL(-), together with an increase in the production of ROS in the absence of alterations in CD36 expression These results provide evidence that CD36 expression induced by LDL(-) is Nrf2-dependent. Also, it was demonstrated that Nrf2 acts as a compensatory mechanism of LDL(-)-induced apoptosis in macrophages. (C) 2009 Elsevier B V. All rights reserved

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Brain mitochondrial ATP-sensitive K+ channel (mito-K-ATP) opening by diazoxide protects against ischemic damage and excitotoxic cell death. Here we studied the redox properties of brain mito-K-ATP. Mito-K-ATP activation during excitotoxicity in cultured cerebellar granule neurons prevented the accumulation of reactive oxygen species (ROS) and cell death. Furthermore, mito-K-ATP activation in isolated brain mitochondria significantly prevented H2O2 release by these organelles but did not change Ca2+ accumulation capacity. Interestingly, the activity of mito-K-ATP was highly dependent on redox state. The thiol reductant mercaptopropionylglycine prevented mito-K-ATP activity, whereas exogenous ROS activated the channel. In addition, the use of mitochondrial substrates that led to higher levels of endogenous mitochondrial ROS release closely correlated with enhanced K+ transport activity through mito-K-ATP. Altogether, our results indicate that brain mito-K-ATP is a redox-sensitive channel that controls mitochondrial ROS release. (c) 2008 Wiley-Liss, Inc.