941 resultados para rainfall erosivity parameter
Diurnal-scale signatures of monsoon rainfall over the Indian region from TRMM satellite observations
Resumo:
One of the most important modes of summer season precipitation variability over the Indian region, the diurnal cycle, is studied using the Tropical Rainfall Measuring Mission 3-hourly, 0.25 degrees x 0.25 degrees 3B42 rainfall product for nine years (1999-2007). Most previous studies have provided an analysis of a single year or a few years of satellite-or station-based rainfall data. Our study aims to systematically analyze the statistical characteristics of the diurnal-scale signature of rainfall over the Indian and surrounding regions. Using harmonic analysis, we extract the signal corresponding to diurnal and subdiurnal variability. Subsequently, the 3-hourly time period or the octet of rainfall peak for this filtered signal, referred to as the ``peak octet,'' is estimated, with care taken to eliminate spurious peaks arising out of Gibbs oscillations. Our analysis suggests that over the Bay of Bengal, there are three distinct modes of the peak octet of diurnal rainfall corresponding to 1130, 1430, and 1730 Indian standard time (IST), from the north central to south bay. This finding could be seen to be consistent with southward propagation of the diurnal rainfall pattern reported by earlier studies. Over the Arabian Sea, there is a spatially coherent pattern in the mode of the peak octet (1430 IST), in a region where it rains for more than 30% of the time. In the equatorial Indian Ocean, while most of the western part shows a late night/early morning peak, the eastern part does not show a spatially coherent pattern in the mode of the peak octet owing to the occurrence of a ual maxima (early morng and early/late afternoon). The imalayan foothills were found to have a mode of peak octet corresponding to 0230 IST, whereas over the Burmese mountains and the Western Ghats (west coast of India) the rainfall peaks during late afternoon/early evening (1430-1730 IST). This implies that the phase of the diurnal cycle over inland orography (e. g., Himalayas) is significantly different from coastal orography (e. g., Western Ghats). We also find that over the Gangetic plains, the peak octet is around 1430 IST, a few hours earlier compared to the typical early evening maxima over land.
Resumo:
The annual cycle of rainfall over the Korean Peninsula is marked by two peaks: one during July and the other during August. Since the mid-1970s, the maximum rainfall over the Korean Peninsula has shifted from July to August. This shift in rainfall peak was caused by a significant increase of August rainfall after the mid-1970s. The basic reason for this shift has been traced to a change in teleconnection between El Nino-Southern Oscillation (ENSO) and August rainfall. The relationship between August rainfall over Korea and ENSO changed from 1954-1975 (PI) to 1976-2002 (PII). The variability of August rainfall was significantly associated with sea surface temperature (SST) variation over the eastern equatorial Pacific during PI, but this relationship is absent during the PII period. In El Nino years during PI, low-level westerly and southerly wind anomalies are dominant around the East China Sea, which relates to strong August rainfall. In La Nina years during PI, easterly and northerly wind anomalies are dominant. During the PII period, however, westerly and southerly wind anomalies around the East China Sea were responsible for the high August rainfall over the East Asian region, even though La Nina SST conditions were in effect over the eastern Pacific.
Resumo:
Swarm Intelligence techniques such as particle swarm optimization (PSO) are shown to be incompetent for an accurate estimation of global solutions in several engineering applications. This problem is more severe in case of inverse optimization problems where fitness calculations are computationally expensive. In this work, a novel strategy is introduced to alleviate this problem. The proposed inverse model based on modified particle swarm optimization algorithm is applied for a contaminant transport inverse model. The inverse models based on standard-PSO and proposed-PSO are validated to estimate the accuracy of the models. The proposed model is shown to be out performing the standard one in terms of accuracy in parameter estimation. The preliminary results obtained using the proposed model is presented in this work.
Resumo:
A considerable amount of work has been dedicated on the development of analytical solutions for flow of chemical contaminants through soils. Most of the analytical solutions for complex transport problems are closed-form series solutions. The convergence of these solutions depends on the eigen values obtained from a corresponding transcendental equation. Thus, the difficulty in obtaining exact solutions from analytical models encourages the use of numerical solutions for the parameter estimation even though, the later models are computationally expensive. In this paper a combination of two swarm intelligence based algorithms are used for accurate estimation of design transport parameters from the closed-form analytical solutions. Estimation of eigen values from a transcendental equation is treated as a multimodal discontinuous function optimization problem. The eigen values are estimated using an algorithm derived based on glowworm swarm strategy. Parameter estimation of the inverse problem is handled using standard PSO algorithm. Integration of these two algorithms enables an accurate estimation of design parameters using closed-form analytical solutions. The present solver is applied to a real world inverse problem in environmental engineering. The inverse model based on swarm intelligence techniques is validated and the accuracy in parameter estimation is shown. The proposed solver quickly estimates the design parameters with a great precision.
Resumo:
We propose certain discrete parameter variants of well known simulation optimization algorithms. Two of these algorithms are based on the smoothed functional (SF) technique while two others are based on the simultaneous perturbation stochastic approximation (SPSA) method. They differ from each other in the way perturbations are obtained and also the manner in which projections and parameter updates are performed. All our algorithms use two simulations and two-timescale stochastic approximation. As an application setting, we consider the important problem of admission control of packets in communication networks under dependent service times. We consider a discrete time slotted queueing model of the system and consider two different scenarios - one where the service times have a dependence on the system state and the other where they depend on the number of arrivals in a time slot. Under our settings, the simulated objective function appears ill-behaved with multiple local minima and a unique global minimum characterized by a sharp dip in the objective function in a small region of the parameter space. We compare the performance of our algorithms on these settings and observe that the two SF algorithms show the best results overall. In fact, in many cases studied, SF algorithms converge to the global minimum.
Resumo:
Variability in rainfall is known to be a major influence on the dynamics of tropical forests, especially rates and patterns of tree mortality. In tropical dry forests a number of contributing factors to tree mortality, including dry season fire and herbivory by large herbivorous mammals, could be related to rainfall patterns, while loss of water potential in trees during the dry season or a wet season drought could also result in enhanced rates of death. While tree mortality as influenced by severe drought has been examined in tropical wet forests there is insufficient understanding of this process in tropical dry forests. We examined these causal factors in relation to inter-annual differences in rainfall in causing tree mortality within a 50-ha Forest Dynamics Plot located in the tropical dry deciduous forests of Mudumalai, southern India, that has been monitored annually since 1988. Over a 19-year period (1988-2007) mean annual mortality rate of all stems >1 cm dbh was 6.9 +/- 4.6% (range = 1.5-17.5%); mortality rates broadly declined from the smaller to the larger size classes with the rates in stems >30 cm dbh being among the lowest recorded in tropical forest globally. Fire was the main agent of mortality in stems 1-5 cm dbh, elephant-herbivory in stems 5-10 cm dbh, and other natural causes in stems > 10 cm dbh. Elephant-related mortality did not show any relationship to rainfall. On the other hand, fire-related mortality was significantly negatively correlated to quantity of rainfall during the preceding year. Mortality due to other causes in the larger stem sizes was significantly negatively correlated to rainfall with a 2-3-year lag, suggesting that water deficit from mild or prolonged drought enhanced the risk of death but only with a time lag that was greater than similar lags in tree mortality observed in other forest types. In this respect, tropical dry forests growing in regions of high rainfall variability may have evolved greater resistance to rainfall deficit as compared to tropical moist or temperate forests but are still vulnerable to drought-related mortality.
Resumo:
The current approach for protecting the receiving water environment from urban stormwater pollution is the adoption of structural measures commonly referred to as Water Sensitive Urban Design (WSUD). The treatment efficiency of WSUD measures closely depends on the design of the specific treatment units. As stormwater quality is influenced by rainfall characteristics, the selection of appropriate rainfall events for treatment design is essential to ensure the effectiveness of WSUD systems. Based on extensive field investigations in four urban residential catchments based at Gold Coast, Australia, and computer modelling, this paper details a technically robust approach for the selection of rainfall events for stormwater treatment design using a three-component model. The modelling results confirmed that high intensity-short duration events produce 58.0% of TS load while they only generated 29.1% of total runoff volume. Additionally, rainfall events smaller than 6-month average recurrence interval (ARI) generates a greater cumulative runoff volume (68.4% of the total annual runoff volume) and TS load (68.6% of the TS load exported) than the rainfall events larger than 6-month ARI. The results suggest that for the study catchments, stormwater treatment design could be based on the rainfall which had a mean value of 31 mm/h average intensity and 0.4 h duration. These outcomes also confirmed that selecting smaller ARI rainfall events with high intensity-short duration as the threshold for treatment system design is the most feasible approach since these events cumulatively generate a major portion of the annual pollutant load compared to the other types of events, despite producing a relatively smaller runoff volume. This implies that designs based on small and more frequent rainfall events rather than larger rainfall events would be appropriate in the context of efficiency in treatment performance, cost-effectiveness and possible savings in land area needed.
Resumo:
Increased emphasis on rotorcraft performance and perational capabilities has resulted in accurate computation of aerodynamic stability and control parameters. System identification is one such tool in which the model structure and parameters such as aerodynamic stability and control derivatives are derived. In the present work, the rotorcraft aerodynamic parameters are computed using radial basis function neural networks (RBFN) in the presence of both state and measurement noise. The effect of presence of outliers in the data is also considered. RBFN is found to give superior results compared to finite difference derivatives for noisy data. (C) 2010 Elsevier Inc. All rights reserved.
Resumo:
The significance of treating rainfall as a chaotic system instead of a stochastic system for a better understanding of the underlying dynamics has been taken up by various studies recently. However, an important limitation of all these approaches is the dependence on a single method for identifying the chaotic nature and the parameters involved. Many of these approaches aim at only analyzing the chaotic nature and not its prediction. In the present study, an attempt is made to identify chaos using various techniques and prediction is also done by generating ensembles in order to quantify the uncertainty involved. Daily rainfall data of three regions with contrasting characteristics (mainly in the spatial area covered), Malaprabha, Mahanadi and All-India for the period 1955-2000 are used for the study. Auto-correlation and mutual information methods are used to determine the delay time for the phase space reconstruction. Optimum embedding dimension is determined using correlation dimension, false nearest neighbour algorithm and also nonlinear prediction methods. The low embedding dimensions obtained from these methods indicate the existence of low dimensional chaos in the three rainfall series. Correlation dimension method is done on th phase randomized and first derivative of the data series to check whether the saturation of the dimension is due to the inherent linear correlation structure or due to low dimensional dynamics. Positive Lyapunov exponents obtained prove the exponential divergence of the trajectories and hence the unpredictability. Surrogate data test is also done to further confirm the nonlinear structure of the rainfall series. A range of plausible parameters is used for generating an ensemble of predictions of rainfall for each year separately for the period 1996-2000 using the data till the preceding year. For analyzing the sensitiveness to initial conditions, predictions are done from two different months in a year viz., from the beginning of January and June. The reasonably good predictions obtained indicate the efficiency of the nonlinear prediction method for predicting the rainfall series. Also, the rank probability skill score and the rank histograms show that the ensembles generated are reliable with a good spread and skill. A comparison of results of the three regions indicates that although they are chaotic in nature, the spatial averaging over a large area can increase the dimension and improve the predictability, thus destroying the chaotic nature. (C) 2010 Elsevier Ltd. All rights reserved.
Resumo:
The problem of admission control of packets in communication networks is studied in the continuous time queueing framework under different classes of service and delayed information feedback. We develop and use a variant of a simulation based two timescale simultaneous perturbation stochastic approximation (SPSA) algorithm for finding an optimal feedback policy within the class of threshold type policies. Even though SPSA has originally been designed for continuous parameter optimization, its variant for the discrete parameter case is seen to work well. We give a proof of the hypothesis needed to show convergence of the algorithm on our setting along with a sketch of the convergence analysis. Extensive numerical experiments with the algorithm are illustrated for different parameter specifications. In particular, we study the effect of feedback delays on the system performance.
Resumo:
The scope of application of Laplace transforms presently limited to the study of linear partial differential equations, is extended to the nonlinear domain by this study. This has been achieved by modifying the definition of D transforms, put forth recently for the study of classes of nonlinear lumped parameter systems. The appropriate properties of the new D transforms are presented to bring out their applicability in the analysis of nonlinear distributed parameter systems.
Resumo:
Equivalence of certain classes of second-order non-linear distributed parameter systems and corresponding linear third-order systems is established through a differential transformation technique. As linear systems are amenable to analysis through existing techniques, this study is expected to offer a method of tackling certain classes of non-linear problems which may otherwise prove to be formidable in nature.
Resumo:
Generally average rainfall over meteorological subdivisions is used for assessment of the variability of monsoon rainfall. It is shown here that variations of seasonal rainfall over the meteorological subdivisions of interior Karnataka are not coherent. A methodology for delineating coherent rainfall zones is developed in this paper and applied to derive such zones for the State of Karnataka.
Resumo:
The apparent contradiction between the exact nature of the interaction parameter formalism as presented by Lupis and Elliott and the inconsistencies discussed recently by Pelton and Bale arise from the truncation of the Maclaurin series in the latter treatment. The truncation removes the exactness of the expression for the logarithm of the activity coefficient of a solute in a multi-component system. The integrals are therefore path dependent. Formulae for integration along paths of constant Xi,or X i/Xj are presented. The expression for In γsolvent given by Pelton and Bale is valid only in the limit that the mole fraction of solvent tends to one. The truncation also destroys the general relations between interaction parameters derived by Lupis and Elliott. For each specific choice of parameters special relationships are obtained between interaction parameters.