992 resultados para radon and progeny
Resumo:
DNA sequence comparison of 412 base-pairs fragments of the mitochondrial cytochrome B gene was used to infer the genetic structure of nine geographical Triatoma infestans populations and their phylogenetic relationship with T. melanosoma and T. brasiliensis. T. infestans and T. melanosoma were compared by morphometry, allozyme and cytogenetic analyses, as well as subjected to reciprocal crosses, in order to clarify the taxonomic status of the latter. No differences were found to distinguish the two species and the crosses between them yielded progeny. T. infestans populations presented four haplotypes that could be separated in two clusters: one formed by the samples from Bolivia (Andes and Chaco) and the other formed by samples from Argentina and Brazil. Silvatic and domestic T. infestans populations from Bolivia (Andes) were genetically identical.
Resumo:
The most important vectors of human Plasmodium in the neotropics belong to the subgenus Nyssorhynchus. These species are generally sympatric in terms of their geographical distributions. Some are difficult to identify based solely on examination of adult females using the available morphological keys, in these cases examination of immature stages and male genitalia is required to make correct determinations. However, in epidemiological studies it is necessary to identify the species of adult females which are found near humans, i.e. in studies of malaria transmission or evaluation of control measures. The purpose of the present study was to evaluate the discrimination of adult females of different species of Nyssorhynchus isolated mainly from Southern Colombia (department of Putumayo), using morphometric analysis. Adult females were obtained after rearing larvae collected in natural breeding places and from the progeny of females collected on humans. The morphological characteristics of the immature stages allowed the identification of four species of the subgroup Oswaldoi from Southern Colombia: Anopheles rangeli Gabaldon, Cova Garcia & Lopez, An. oswaldoi (Peryassu), An. benarrochi Gabaldon, Cova Garcia & Lopez and An. triannulatus (Neiva & Pinto). The species An. nuneztovari (Gabaldon) from the Northwest of Colombia was included for comparison. Morphometric analysis allowed differentiation of the females of all species to a confidence level approaching 90% using principal components analysis of 10 wing and leg variables, followed by canonical variate analysis of the first four principal components. We conclude that morphometrics may represent a useful taxonomic tool for this group and that its use should be further studied.
Resumo:
Infestation parameters and indices of mites, ticks and fleas associated with wild rodents from northeastern Buenos Aires Province, Argentina, were studied. Host species similarity was also analyzed in relation to their ectoparasites. Fifty-five rodents were captured from January 2000 to March 2001. In total, 1,022 ectoparasites were collected and three ectoparasite-host associations were new records. However, this is the first study on Craneopsylla minerva wolffhuegeli infesting parameters. Ectoparasite total mean abundance and total prevalence were higher in Holochilus brasiliensis (MA = 47.7; P = 100%) and Scapteromys aquaticus (MA = 25.4; P = 95.4%), meanwhile specific richness and diversity were higher in Oligoryzomys flavescens (S = 6; H = 1.3) and Akodon azarae (S = 4; H = 1.0). On the other hand, the only individual of Calomys laucha was not parasited. S. aquaticus-H. brasiliensis, which preferred similar microhabitats, shared the same ectoparasite species (Css = 100). Whereas, A. azarae, which was mostly associated with grassland, showed the highest difference with the other hosts (Css < 0.4). Considering every ectoparasite species, H. brasiliensis showed the highest mean abundance, prevalence and preference. The results suggest that the particular characteristics of this rodent would give it better possibilities not only of being infested by ectoparasites, but also of transmitting them to its progeny.
Resumo:
BACKGROUND AND AIMS: The Senecio hybrid zone on Mt Etna, Sicily, is characterized by steep altitudinal clines in quantitative traits and genetic variation. Such clines are thought to be maintained by a combination of 'endogenous' selection arising from genetic incompatibilities and environment-dependent 'exogenous' selection leading to local adaptation. Here, the hypothesis was tested that local adaptation to the altitudinal temperature gradient contributes to maintaining divergence between the parental species, S. chrysanthemifolius and S. aethnensis. METHODS: Intra- and inter-population crosses were performed between five populations from across the hybrid zone and the germination and early seedling growth of the progeny were assessed. KEY RESULTS: Seedlings from higher-altitude populations germinated better under low temperatures (9-13 °C) than those from lower altitude populations. Seedlings from higher-altitude populations had lower survival rates under warm conditions (25/15 °C) than those from lower altitude populations, but also attained greater biomass. There was no altitudinal variation in growth or survival under cold conditions (15/5 °C). Population-level plasticity increased with altitude. Germination, growth and survival of natural hybrids and experimentally generated F(1)s generally exceeded the worse-performing parent. CONCLUSIONS: Limited evidence was found for endogenous selection against hybrids but relatively clear evidence was found for divergence in seed and seedling traits, which is probably adaptive. The combination of low-temperature germination and faster growth in warm conditions might enable high-altitude S. aethnensis to maximize its growth during a shorter growing season, while the slower growth of S. chrysanthemifolius may be an adaptation to drought stress at low altitudes. This study indicates that temperature gradients are likely to be an important environmental factor generating and maintaining adaptive divergence across the Senecio hybrid zone on Mt Etna.
Resumo:
Separate sexes have evolved on numerous independent occasions from hermaphroditic ancestors in flowering plants. The mechanisms of sex determination is known for only a handful of such species, but, in those that have been investigated, it usually involves alleles segregating at a single locus, sometimes on heteromorphic sex chromosomes. In the genus Mercurialis, transitions between combined (hermaphroditism) and separate sexes (dioecy or androdioecy, where males co-occur with hermaphrodites rather than females) have occurred more than once in association with hybridisation and shifts in ploidy. Previous work has pointed to an unusual 3-locus system of sex determination in dioecious populations. Here, we use crosses and genotyping for a sex-linked marker to reject this model: sex in diploid dioecious M. annua is determined at a single locus with a dominant male-determining allele (an XY system). We also crossed individuals among lineages of Mercurialis that differ in their ploidy and sexual system to ascertain the extent to which the same sex-determination system has been conserved following genome duplication, hybridisation and transitions between dioecy and hermaphroditism. Our results indicate that the male-determining element is fully capable of determining gender in the progeny of hybrids between different lineages. Specifically, males crossed with females or hermaphrodites always generate 1:1 male:female or male:hermaphrodite sex ratios, respectively, regardless of the ploidy levels involved (diploid, tetraploid or hexaploid). Our results throw further light on the genetics of the remarkable variation in sexual systems in the genus Mercurialis. They also illustrate the almost identical expression of sex-determining alleles in terms of sexual phenotypes across multiple divergent backgrounds, including those that have lost separate sexes altogether.
Resumo:
Anopheles (Nyssorhynchus) benarrochi, An. (N.) oswaldoi, and An. (N.) rangeli are the most common anthropophilic mosquitoes in the southern Colombian state of Putumayo. Adult females are most commonly collected in epidemiological studies, and this stage poses significant problems for correct identification, due to overlapping inter-specific morphological characters. Although An. rangeli is easy to identify, the morphological variant of An. benarrochi found in the region and An. oswaldoi are not always easy to separate. Herein we provide a rapid molecular method to distinguish these two species in Southern Colombia. Sequence data for the second internal transcribed spacer (ITS2) region of rDNA was generated for link-reared progeny of An. benarrochi and An. oswaldoi, that had been identified using all life stages. ITS2 sequences were 540 bp in length in An. benarrochi (n = 9) and 531 bp in An. oswaldoi (n = 7). Sequences showed no intra-specific variation and ungapped inter-specific sequence divergence was 6.4%. Species diagnostic banding patterns were recovered following digestion of the ITS2 amplicons with the enzyme Hae III as follows: An. benarrochi (365, 137, and 38 bp) and An. oswaldoi (493 and 38 bp). This polymerase chain reaction-restriction fragment length polymorphism (PCR-RFLP) assay provides rapid, accurate, and inexpensive species diagnosis of adult females. This will benefit future epidemiological studies and, as PCR amplification can be achieved using a single mosquito leg, the remaining specimen can be either retained as a morphological voucher or further used in vector incrimination studies. That An. benarrochi comprises a complex of at least two species across Latin America is discussed.
Resumo:
Trypanosoma cruzi acute infections often go unperceived, but one third of chronically infected individuals die of Chagas disease, showing diverse manifestations affecting the heart, intestines, and nervous systems. A common denominator of pathology in Chagas disease is the minimal rejection unit, whereby parasite-free target host cells are destroyed by immune system mononuclear effectors cells infiltrates. Another key feature stemming from T. cruzi infection is the integration of kDNA minicircles into the vertebrate host genome; horizontal transfer of the parasite DNA can undergo vertical transmission to the progeny of mammals and birds. kDNA integration-induced mutations can enter multiple loci in diverse chromosomes, generating new genes, pseudo genes and knock-outs, and resulting in genomic shuffling and remodeling over time. As a result of the juxtaposition of kDNA insertions with host open reading frames, novel chimeric products may be generated. Germ line transmission of kDNA-mutations determined the appearance of lesions in birds that are indistinguishable from those seen in Chagas disease patients. The production of tissue lesions showing typical minimal rejection units in birds' refractory to T. cruzi infection is consistent with the hypothesis that autoimmunity, likely triggered by integration-induced phenotypic alterations, plays a major role in the pathogenesis of Chagas disease.
Resumo:
Resistant (Taim, RS) and susceptible albino (Joinville, SC) Biomphalaria tenagophila populations were kept together, at different proportions, throughout a 18-month-period. Some of the snail groups were submitted to Schistosoma mansoni infection. The targets of this study were (a) to analyze the populational dynamics among resistant and susceptible individuals to S. mansoni; (b) to study the resistance phenotype in descendants of cross-breeding; (c) to observe whether the parasite could exert any kind of selection in those snail populations. Throughout the experiment it could be observed that the susceptible B. tenagophila strain (Joinville) underwent a selective pressure of the parasite that was negative, since the individuals showed a high mortality rate. Although B. tenagophila (Taim) population presented a higher mortality rate without pressure of the parasite, this event was compensated by a reproductive capacity. B. tenagophila Taim was more fecund than B. tenagophila Joinville and was able to transmit the resistance character to their descendants. F1 generation obtained by cross-breeding between resistant and susceptible lineages was completely resistant to S. mansoni infection, irrespective of the Taim proportion. Moreover, less than 5% of F2 progeny were susceptible to S. mansoni infection.
Resumo:
PURPOSE: In Switzerland, nationwide large-scale radon surveys have been conducted since the early 1980s to establish the distribution of indoor radon concentrations (IRC). The aim of this work was to study the factors influencing IRC in Switzerland using univariate analyses that take into account biases caused by spatial irregularities of sampling. METHODS: About 212,000 IRC measurements carried out in more than 136,000 dwellings were available for this study. A probability map to assess risk of exceeding an IRC of 300 Bq/m(3) was produced using basic geostatistical techniques. Univariate analyses of IRC for different variables, namely the type of radon detector, various building characteristics such as foundation type, year of construction and building type, as well as the altitude, the average outdoor temperature during measurement and the lithology, were performed comparing 95% confidence intervals among classes of each variable. Furthermore, a map showing the spatial aggregation of the number of measurements was generated for each class of variable in order to assess biases due to spatially irregular sampling. RESULTS: IRC measurements carried out with electret detectors were 35% higher than measurements performed with track detectors. Regarding building characteristics, the IRC of apartments are significantly lower than individual houses. Furthermore, buildings with concrete foundations have the lowest IRC. A significant decrease in IRC was found in buildings constructed after 1900 and again after 1970. Moreover, IRC decreases at higher outdoor temperatures. There is also a tendency to have higher IRC with altitude. Regarding lithology, carbonate rock in the Jura Mountains produces significantly higher IRC, almost by a factor of 2, than carbonate rock in the Alps. Sedimentary rock and sediment produce the lowest IRC while carbonate rock from the Jura Mountains and igneous rock produce the highest IRC. Potential biases due to spatially unbalanced sampling of measurements were identified for several influencing factors. CONCLUSIONS: Significant associations were found between IRC and all variables under study. However, we showed that the spatial distribution of samples strongly affected the relevance of those associations. Therefore, future methods to estimate local radon hazards should take the multidimensionality of the process of IRC into account.
Resumo:
Susceptibility and compatibility experiments were carried out with 700 Biomphalaria tenagophila from the Paraná River basin exposed to infection with Schistosoma mansoni. Individual infection was performed with 10 miracidia of SJ2 strain from the Paraiba valley (Brazil) originally infective to B. tenagophila. These snails were laboratory-breed progeny of B. tenagophila collected from six localities of Argentina and one from Paraguay. From Argentina: Rincón de Vences (7%) and Posadas (11%) became infected with S. mansoni and the calculation of Frandsen's index (TCP/100) shows that they were Class II poorly compatible. Those snails from Goya (22%), Maloyas (5%), and Berón de Astrada (3%) were Class III compatible to the S. mansoni. None of the 100 snails exposed from Caá-Catí became infected (Class 0 incompatible). Tested samples from Paraguay (Encarnación) were infected (20%) and compatible (Class III). It was also studied the persistence of the infection in 244 snails of the first generation (F1) of those that were susceptible from three places. It was demonstrated an increment of the susceptibility in the F1 from Maloyas (chi2 = 27.22; p = 0.0001) and Posadas (chi2 = 4.24; p = 0.04). The results point out the possibility that schistosomiasis might be able to spread into the Paraná River basin where B. tenagophila exists.
Resumo:
The present work is a thorough investigation of the degree of reproductive isolation between Meccus mazzottii and Meccus longipennis, Meccus picturatus, Meccus pallidipennis and Meccus bassolsae, as well as between M. longipennis and M. picturatus. We examined fertility and segregation of morphological characteristics in two generations of hybrids derived from crosses between these species. The percentage of pairs with (fertile) offspring was highest in the set of crosses between M. longipennis and M. picturatus, and lowest between M. mazzottii and M. picturatus. Most first-generation (F1) individuals from crosses involving M. mazzottii were morphologically similar to this species, while only F1 x F1 progeny of parental crosses between M. mazzottii and M. longipennis had offspring second generation that looked like M. mazzottii. The results indicate that different degrees of reproductive isolation apparently exist among the species of the Phyllosoma complex examined in this study. The biological evidence obtained in this study does not support the proposal that M. longipennis and M. picturatus are full species. It could indicate on the contrary, that both could be considered as subspecies of a single polytypic species. On the other hand, biological evidence supports the proposal that M. mazzottii is a full species.
Resumo:
Seventy-one isolines of Anopheles campestris-like were established from wild-caught females collected from human-biting and animal-biting traps at 12 locations in Thailand. All isolines had an average branch summation of seta 2-VI pupal skins ranging from 20.3-30.0 branches, which is in the range of An. campestris (17-58 branches). They showed three different karyotypes based on the amount of extra heterochromatin in the sex chromosomes, namely Forms B (X2, Y2), E (X1, X2, X3, Y5) and a new karyotypic Form F (X2, X3, Y6). Form B has been found only in Chaing Mai and Kamphaeng Phet populations, while Forms E and F are widely distributed throughout the species range. Genetic crosses between the 12 isolines, which were arbitrarily selected as representatives of An. campestris-like Forms B, E and F, revealed genetic compatibility that provided viable progeny through F2 generations, suggesting a conspecific nature of these karyotypic forms. These results are supported by the very low intraspecies variation (genetic distance < 0.005) of ITS2, COI and COII from genomic DNA of the three karyotypic forms.
Resumo:
Although the genome of Trypanosoma cruzi has been completely sequenced, little is known about its population structure and evolution. Since 1999, two major evolutionary lineages presenting distinct epidemiological characteristics have been recognised: T. cruzi I and T. cruzi II. We describe new and important aspects of the population structure of the parasite, and unequivocally characterise a third ancestral lineage that we propose to name T. cruzi III. Through a careful analysis of haplotypes (blocks of genes that are stably transmitted from generation to generation of the parasite), we inferred at least two hybridisation events between the parental lineages T. cruzi II and T. cruzi III. The strain CL Brener, whose genome was sequenced, is one such hybrid. Based on these results, we propose a simple evolutionary model based on three ancestral genomes, T. cruzi I, T. cruzi II and T. cruzi III. At least two hybridisation events produced evolutionarily viable progeny, and T. cruzi III was the cytoplasmic donor for the resulting offspring (as identified by the mitochondrial clade of the hybrid strains) in both events. This model should be useful to inform evolutionary and pathogenetic hypotheses regarding T. cruzi.