896 resultados para query
Resumo:
Current technology permits connecting local networks via high-bandwidth telephone lines. Central coordinator nodes may use Intelligent Networks to manage data flow over dialed data lines, e.g. ISDN, and to establish connections between LANs. This dissertation focuses on cost minimization and on establishing operational policies for query distribution over heterogeneous, geographically distributed databases. Based on our study of query distribution strategies, public network tariff policies, and database interface standards we propose methods for communication cost estimation, strategies for the reduction of bandwidth allocation, and guidelines for central to node communication protocols. Our conclusion is that dialed data lines offer a cost effective alternative for the implementation of distributed database query systems, and that existing commercial software may be adapted to support query processing in heterogeneous distributed database systems. ^
Resumo:
Cloud computing can be defined as a distributed computational model by through resources (hardware, storage, development platforms and communication) are shared, as paid services accessible with minimal management effort and interaction. A great benefit of this model is to enable the use of various providers (e.g a multi-cloud architecture) to compose a set of services in order to obtain an optimal configuration for performance and cost. However, the multi-cloud use is precluded by the problem of cloud lock-in. The cloud lock-in is the dependency between an application and a cloud platform. It is commonly addressed by three strategies: (i) use of intermediate layer that stands to consumers of cloud services and the provider, (ii) use of standardized interfaces to access the cloud, or (iii) use of models with open specifications. This paper outlines an approach to evaluate these strategies. This approach was performed and it was found that despite the advances made by these strategies, none of them actually solves the problem of lock-in cloud. In this sense, this work proposes the use of Semantic Web to avoid cloud lock-in, where RDF models are used to specify the features of a cloud, which are managed by SPARQL queries. In this direction, this work: (i) presents an evaluation model that quantifies the problem of cloud lock-in, (ii) evaluates the cloud lock-in from three multi-cloud solutions and three cloud platforms, (iii) proposes using RDF and SPARQL on management of cloud resources, (iv) presents the cloud Query Manager (CQM), an SPARQL server that implements the proposal, and (v) comparing three multi-cloud solutions in relation to CQM on the response time and the effectiveness in the resolution of cloud lock-in.
Resumo:
Users seeking information may not find relevant information pertaining to their information need in a specific language. But information may be available in a language different from their own, but users may not know that language. Thus users may experience difficulty in accessing the information present in different languages. Since the retrieval process depends on the translation of the user query, there are many issues in getting the right translation of the user query. For a pair of languages chosen by a user, resources, like incomplete dictionary, inaccurate machine translation system may exist. These resources may be insufficient to map the query terms in one language to its equivalent terms in another language. Also for a given query, there might exist multiple correct translations. The underlying corpus evidence may suggest a clue to select a probable set of translations that could eventually perform a better information retrieval. In this paper, we present a cross language information retrieval approach to effectively retrieve information present in a language other than the language of the user query using the corpus driven query suggestion approach. The idea is to utilize the corpus based evidence of one language to improve the retrieval and re-ranking of news documents in the other language. We use FIRE corpora - Tamil and English news collections in our experiments and illustrate the effectiveness of the proposed cross language information retrieval approach.
Resumo:
The paper addresses issues related to the design of a graphical query mechanism that can act as an interface to any object-oriented database system (OODBS), in general, and the object model of ODMG 2.0, in particular. In the paper a brief literature survey of related work is given, and an analysis methodology that allows the evaluation of such languages is proposed. Moreover, the user's view level of a new graphical query language, namely GOQL (Graphical Object Query Language), for ODMG 2.0 is presented. The user's view level provides a graphical schema that does not contain any of the perplexing details of an object-oriented database schema, and it also provides a foundation for a graphical interface that can support ad-hoc queries for object-oriented database applications. We illustrate, using an example, the user's view level of GOQL
Resumo:
A search query, being a very concise grounding of user intent, could potentially have many possible interpretations. Search engines hedge their bets by diversifying top results to cover multiple such possibilities so that the user is likely to be satisfied, whatever be her intended interpretation. Diversified Query Expansion is the problem of diversifying query expansion suggestions, so that the user can specialize the query to better suit her intent, even before perusing search results. We propose a method, Select-Link-Rank, that exploits semantic information from Wikipedia to generate diversified query expansions. SLR does collective processing of terms and Wikipedia entities in an integrated framework, simultaneously diversifying query expansions and entity recommendations. SLR starts with selecting informative terms from search results of the initial query, links them to Wikipedia entities, performs a diversity-conscious entity scoring and transfers such scoring to the term space to arrive at query expansion suggestions. Through an extensive empirical analysis and user study, we show that our method outperforms the state-of-the-art diversified query expansion and diversified entity recommendation techniques.
Resumo:
We consider the problem of resource selection in clustered Peer-to-Peer Information Retrieval (P2P IR) networks with cooperative peers. The clustered P2P IR framework presents a significant departure from general P2P IR architectures by employing clustering to ensure content coherence between resources at the resource selection layer, without disturbing document allocation. We propose that such a property could be leveraged in resource selection by adapting well-studied and popular inverted lists for centralized document retrieval. Accordingly, we propose the Inverted PeerCluster Index (IPI), an approach that adapts the inverted lists, in a straightforward manner, for resource selection in clustered P2P IR. IPI also encompasses a strikingly simple peer-specific scoring mechanism that exploits the said index for resource selection. Through an extensive empirical analysis on P2P IR testbeds, we establish that IPI competes well with the sophisticated state-of-the-art methods in virtually every parameter of interest for the resource selection task, in the context of clustered P2P IR.
Resumo:
Edge-labeled graphs have proliferated rapidly over the last decade due to the increased popularity of social networks and the Semantic Web. In social networks, relationships between people are represented by edges and each edge is labeled with a semantic annotation. Hence, a huge single graph can express many different relationships between entities. The Semantic Web represents each single fragment of knowledge as a triple (subject, predicate, object), which is conceptually identical to an edge from subject to object labeled with predicates. A set of triples constitutes an edge-labeled graph on which knowledge inference is performed. Subgraph matching has been extensively used as a query language for patterns in the context of edge-labeled graphs. For example, in social networks, users can specify a subgraph matching query to find all people that have certain neighborhood relationships. Heavily used fragments of the SPARQL query language for the Semantic Web and graph queries of other graph DBMS can also be viewed as subgraph matching over large graphs. Though subgraph matching has been extensively studied as a query paradigm in the Semantic Web and in social networks, a user can get a large number of answers in response to a query. These answers can be shown to the user in accordance with an importance ranking. In this thesis proposal, we present four different scoring models along with scalable algorithms to find the top-k answers via a suite of intelligent pruning techniques. The suggested models consist of a practically important subset of the SPARQL query language augmented with some additional useful features. The first model called Substitution Importance Query (SIQ) identifies the top-k answers whose scores are calculated from matched vertices' properties in each answer in accordance with a user-specified notion of importance. The second model called Vertex Importance Query (VIQ) identifies important vertices in accordance with a user-defined scoring method that builds on top of various subgraphs articulated by the user. Approximate Importance Query (AIQ), our third model, allows partial and inexact matchings and returns top-k of them with a user-specified approximation terms and scoring functions. In the fourth model called Probabilistic Importance Query (PIQ), a query consists of several sub-blocks: one mandatory block that must be mapped and other blocks that can be opportunistically mapped. The probability is calculated from various aspects of answers such as the number of mapped blocks, vertices' properties in each block and so on and the most top-k probable answers are returned. An important distinguishing feature of our work is that we allow the user a huge amount of freedom in specifying: (i) what pattern and approximation he considers important, (ii) how to score answers - irrespective of whether they are vertices or substitution, and (iii) how to combine and aggregate scores generated by multiple patterns and/or multiple substitutions. Because so much power is given to the user, indexing is more challenging than in situations where additional restrictions are imposed on the queries the user can ask. The proposed algorithms for the first model can also be used for answering SPARQL queries with ORDER BY and LIMIT, and the method for the second model also works for SPARQL queries with GROUP BY, ORDER BY and LIMIT. We test our algorithms on multiple real-world graph databases, showing that our algorithms are far more efficient than popular triple stores.
Resumo:
Homomorphic encryption is a particular type of encryption method that enables computing over encrypted data. This has a wide range of real world ramifications such as being able to blindly compute a search result sent to a remote server without revealing its content. In the first part of this thesis, we discuss how database search queries can be made secure using a homomorphic encryption scheme based on the ideas of Gahi et al. Gahi’s method is based on the integer-based fully homomorphic encryption scheme proposed by Dijk et al. We propose a new database search scheme called the Homomorphic Query Processing Scheme, which can be used with the ring-based fully homomorphic encryption scheme proposed by Braserski. In the second part of this thesis, we discuss the cybersecurity of the smart electric grid. Specifically, we use the Homomorphic Query Processing scheme to construct a keyword search technique in the smart grid. Our work is based on the Public Key Encryption with Keyword Search (PEKS) method introduced by Boneh et al. and a Multi-Key Homomorphic Encryption scheme proposed by L´opez-Alt et al. A summary of the results of this thesis (specifically the Homomorphic Query Processing Scheme) is published at the 14th Canadian Workshop on Information Theory (CWIT).
Resumo:
International audience
Resumo:
Throughout the last years technologic improvements have enabled internet users to analyze and retrieve data regarding Internet searches. In several fields of study this data has been used. Some authors have been using search engine query data to forecast economic variables, to detect influenza areas or to demonstrate that it is possible to capture some patterns in stock markets indexes. In this paper one investment strategy is presented using Google Trends’ weekly query data from major global stock market indexes’ constituents. The results suggest that it is indeed possible to achieve higher Info Sharpe ratios, especially for the major European stock market indexes in comparison to those provided by a buy-and-hold strategy for the period considered.
Resumo:
Conventional web search engines are centralised in that a single entity crawls and indexes the documents selected for future retrieval, and the relevance models used to determine which documents are relevant to a given user query. As a result, these search engines suffer from several technical drawbacks such as handling scale, timeliness and reliability, in addition to ethical concerns such as commercial manipulation and information censorship. Alleviating the need to rely entirely on a single entity, Peer-to-Peer (P2P) Information Retrieval (IR) has been proposed as a solution, as it distributes the functional components of a web search engine – from crawling and indexing documents, to query processing – across the network of users (or, peers) who use the search engine. This strategy for constructing an IR system poses several efficiency and effectiveness challenges which have been identified in past work. Accordingly, this thesis makes several contributions towards advancing the state of the art in P2P-IR effectiveness by improving the query processing and relevance scoring aspects of a P2P web search. Federated search systems are a form of distributed information retrieval model that route the user’s information need, formulated as a query, to distributed resources and merge the retrieved result lists into a final list. P2P-IR networks are one form of federated search in routing queries and merging result among participating peers. The query is propagated through disseminated nodes to hit the peers that are most likely to contain relevant documents, then the retrieved result lists are merged at different points along the path from the relevant peers to the query initializer (or namely, customer). However, query routing in P2P-IR networks is considered as one of the major challenges and critical part in P2P-IR networks; as the relevant peers might be lost in low-quality peer selection while executing the query routing, and inevitably lead to less effective retrieval results. This motivates this thesis to study and propose query routing techniques to improve retrieval quality in such networks. Cluster-based semi-structured P2P-IR networks exploit the cluster hypothesis to organise the peers into similar semantic clusters where each such semantic cluster is managed by super-peers. In this thesis, I construct three semi-structured P2P-IR models and examine their retrieval effectiveness. I also leverage the cluster centroids at the super-peer level as content representations gathered from cooperative peers to propose a query routing approach called Inverted PeerCluster Index (IPI) that simulates the conventional inverted index of the centralised corpus to organise the statistics of peers’ terms. The results show a competitive retrieval quality in comparison to baseline approaches. Furthermore, I study the applicability of using the conventional Information Retrieval models as peer selection approaches where each peer can be considered as a big document of documents. The experimental evaluation shows comparative and significant results and explains that document retrieval methods are very effective for peer selection that brings back the analogy between documents and peers. Additionally, Learning to Rank (LtR) algorithms are exploited to build a learned classifier for peer ranking at the super-peer level. The experiments show significant results with state-of-the-art resource selection methods and competitive results to corresponding classification-based approaches. Finally, I propose reputation-based query routing approaches that exploit the idea of providing feedback on a specific item in the social community networks and manage it for future decision-making. The system monitors users’ behaviours when they click or download documents from the final ranked list as implicit feedback and mines the given information to build a reputation-based data structure. The data structure is used to score peers and then rank them for query routing. I conduct a set of experiments to cover various scenarios including noisy feedback information (i.e, providing positive feedback on non-relevant documents) to examine the robustness of reputation-based approaches. The empirical evaluation shows significant results in almost all measurement metrics with approximate improvement more than 56% compared to baseline approaches. Thus, based on the results, if one were to choose one technique, reputation-based approaches are clearly the natural choices which also can be deployed on any P2P network.
Resumo:
This paper discusses a framework in which catalog service communities are built, linked for interaction, and constantly monitored and adapted over time. A catalog service community (represented as a peer node in a peer-to-peer network) in our system can be viewed as domain specific data integration mediators representing the domain knowledge and the registry information. The query routing among communities is performed to identify a set of data sources that are relevant to answering a given query. The system monitors the interactions between the communities to discover patterns that may lead to restructuring of the network (e.g., irrelevant peers removed, new relationships created, etc.).
Resumo:
With the advent of Service Oriented Architecture, Web Services have gained tremendous popularity. Due to the availability of a large number of Web services, finding an appropriate Web service according to the requirement of the user is a challenge. This warrants the need to establish an effective and reliable process of Web service discovery. A considerable body of research has emerged to develop methods to improve the accuracy of Web service discovery to match the best service. The process of Web service discovery results in suggesting many individual services that partially fulfil the user’s interest. By considering the semantic relationships of words used in describing the services as well as the use of input and output parameters can lead to accurate Web service discovery. Appropriate linking of individual matched services should fully satisfy the requirements which the user is looking for. This research proposes to integrate a semantic model and a data mining technique to enhance the accuracy of Web service discovery. A novel three-phase Web service discovery methodology has been proposed. The first phase performs match-making to find semantically similar Web services for a user query. In order to perform semantic analysis on the content present in the Web service description language document, the support-based latent semantic kernel is constructed using an innovative concept of binning and merging on the large quantity of text documents covering diverse areas of domain of knowledge. The use of a generic latent semantic kernel constructed with a large number of terms helps to find the hidden meaning of the query terms which otherwise could not be found. Sometimes a single Web service is unable to fully satisfy the requirement of the user. In such cases, a composition of multiple inter-related Web services is presented to the user. The task of checking the possibility of linking multiple Web services is done in the second phase. Once the feasibility of linking Web services is checked, the objective is to provide the user with the best composition of Web services. In the link analysis phase, the Web services are modelled as nodes of a graph and an allpair shortest-path algorithm is applied to find the optimum path at the minimum cost for traversal. The third phase which is the system integration, integrates the results from the preceding two phases by using an original fusion algorithm in the fusion engine. Finally, the recommendation engine which is an integral part of the system integration phase makes the final recommendations including individual and composite Web services to the user. In order to evaluate the performance of the proposed method, extensive experimentation has been performed. Results of the proposed support-based semantic kernel method of Web service discovery are compared with the results of the standard keyword-based information-retrieval method and a clustering-based machine-learning method of Web service discovery. The proposed method outperforms both information-retrieval and machine-learning based methods. Experimental results and statistical analysis also show that the best Web services compositions are obtained by considering 10 to 15 Web services that are found in phase-I for linking. Empirical results also ascertain that the fusion engine boosts the accuracy of Web service discovery by combining the inputs from both the semantic analysis (phase-I) and the link analysis (phase-II) in a systematic fashion. Overall, the accuracy of Web service discovery with the proposed method shows a significant improvement over traditional discovery methods.