870 resultados para purchase confidence


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Asset correlations are of critical importance in quantifying portfolio credit risk and economic capitalin financial institutions. Estimation of asset correlation with rating transition data has focusedon the point estimation of the correlation without giving any consideration to the uncertaintyaround these point estimates. In this article we use Bayesian methods to estimate a dynamicfactor model for default risk using rating data (McNeil et al., 2005; McNeil and Wendin, 2007).Bayesian methods allow us to formally incorporate human judgement in the estimation of assetcorrelation, through the prior distribution and fully characterize a confidence set for the correlations.Results indicate: i) a two factor model rather than the one factor model, as proposed bythe Basel II framework, better represents the historical default data. ii) importance of unobservedfactors in this type of models is reinforced and point out that the levels of the implied asset correlationscritically depend on the latent state variable used to capture the dynamics of default,as well as other assumptions on the statistical model. iii) the posterior distributions of the assetcorrelations show that the Basel recommended bounds, for this parameter, undermine the levelof systemic risk.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

El treball desenvolupat en aquesta tesi presenta un profund estudi i proveïx solucions innovadores en el camp dels sistemes recomanadors. Els mètodes que usen aquests sistemes per a realitzar les recomanacions, mètodes com el Filtrat Basat en Continguts (FBC), el Filtrat Col·laboratiu (FC) i el Filtrat Basat en Coneixement (FBC), requereixen informació dels usuaris per a predir les preferències per certs productes. Aquesta informació pot ser demogràfica (Gènere, edat, adreça, etc), o avaluacions donades sobre algun producte que van comprar en el passat o informació sobre els seus interessos. Existeixen dues formes d'obtenir aquesta informació: els usuaris ofereixen explícitament aquesta informació o el sistema pot adquirir la informació implícita disponible en les transaccions o historial de recerca dels usuaris. Per exemple, el sistema recomanador de pel·lícules MovieLens (http://movielens.umn.edu/login) demana als usuaris que avaluïn almenys 15 pel·lícules dintre d'una escala de * a * * * * * (horrible, ...., ha de ser vista). El sistema genera recomanacions sobre la base d'aquestes avaluacions. Quan els usuaris no estan registrat en el sistema i aquest no té informació d'ells, alguns sistemes realitzen les recomanacions tenint en compte l'historial de navegació. Amazon.com (http://www.amazon.com) realitza les recomanacions tenint en compte les recerques que un usuari a fet o recomana el producte més venut. No obstant això, aquests sistemes pateixen de certa falta d'informació. Aquest problema és generalment resolt amb l'adquisició d'informació addicional, se li pregunta als usuaris sobre els seus interessos o es cerca aquesta informació en fonts addicionals. La solució proposada en aquesta tesi és buscar aquesta informació en diverses fonts, específicament aquelles que contenen informació implícita sobre les preferències dels usuaris. Aquestes fonts poden ser estructurades com les bases de dades amb informació de compres o poden ser no estructurades com les pàgines web on els usuaris deixen la seva opinió sobre algun producte que van comprar o posseïxen. Nosaltres trobem tres problemes fonamentals per a aconseguir aquest objectiu: 1 . La identificació de fonts amb informació idònia per als sistemes recomanadors. 2 . La definició de criteris que permetin la comparança i selecció de les fonts més idònies. 3 . La recuperació d'informació de fonts no estructurades. En aquest sentit, en la tesi proposada s'ha desenvolupat: 1 . Una metodologia que permet la identificació i selecció de les fonts més idònies. Criteris basats en les característiques de les fonts i una mesura de confiança han estat utilitzats per a resoldre el problema de la identificació i selecció de les fonts. 2 . Un mecanisme per a recuperar la informació no estructurada dels usuaris disponible en la web. Tècniques de Text Mining i ontologies s'han utilitzat per a extreure informació i estructurar-la apropiadament perquè la utilitzin els recomanadors. Les contribucions del treball desenvolupat en aquesta tesi doctoral són: 1. Definició d'un conjunt de característiques per a classificar fonts rellevants per als sistemes recomanadors 2. Desenvolupament d'una mesura de rellevància de les fonts calculada sobre la base de les característiques definides 3. Aplicació d'una mesura de confiança per a obtenir les fonts més fiables. La confiança es definida des de la perspectiva de millora de la recomanació, una font fiable és aquella que permet millorar les recomanacions. 4. Desenvolupament d'un algorisme per a seleccionar, des d'un conjunt de fonts possibles, les més rellevants i fiable utilitzant les mitjanes esmentades en els punts previs. 5. Definició d'una ontologia per a estructurar la informació sobre les preferències dels usuaris que estan disponibles en Internet. 6. Creació d'un procés de mapatge que extreu automàticament informació de les preferències dels usuaris disponibles en la web i posa aquesta informació dintre de l'ontologia. Aquestes contribucions permeten aconseguir dos objectius importants: 1 . Millorament de les recomanacions usant fonts d'informació alternatives que sigui rellevants i fiables. 2 . Obtenir informació implícita dels usuaris disponible en Internet.

Relevância:

20.00% 20.00%

Publicador:

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The article investigates how purchasing intentions among a sample of Italian consumers are influenced by different levels of risk perception and their trust in food-safety information provided by different sources such as the food industry, government agencies, or consumers' associations. The assessment of the determinants of intention to purchase was carried out by estimating a causal model for the chicken case in which attitudes, subjective norms, and perceived risk play a major role in determining buyer's behavior. In particular, the role of trust in influencing risk perception is highlighted either as a general construct or as specific constructs targeting food chain, policy actors, and the media. [EconLit citations: Q130, Q190, D120]. (C) 2008 Wiley Periodicals, Inc.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A number of authors have proposed clinical trial designs involving the comparison of several experimental treatments with a control treatment in two or more stages. At the end of the first stage, the most promising experimental treatment is selected, and all other experimental treatments are dropped from the trial. Provided it is good enough, the selected experimental treatment is then compared with the control treatment in one or more subsequent stages. The analysis of data from such a trial is problematic because of the treatment selection and the possibility of stopping at interim analyses. These aspects lead to bias in the maximum-likelihood estimate of the advantage of the selected experimental treatment over the control and to inaccurate coverage for the associated confidence interval. In this paper, we evaluate the bias of the maximum-likelihood estimate and propose a bias-adjusted estimate. We also propose an approach to the construction of a confidence region for the vector of advantages of the experimental treatments over the control based on an ordering of the sample space. These regions are shown to have accurate coverage, although they are also shown to be necessarily unbounded. Confidence intervals for the advantage of the selected treatment are obtained from the confidence regions and are shown to have more accurate coverage than the standard confidence interval based upon the maximum-likelihood estimate and its asymptotic standard error.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A means of assessing, monitoring and controlling aggregate emissions from multi-instrument Emissions Trading Schemes is proposed. The approach allows contributions from different instruments with different forms of emissions targets to be integrated. Where Emissions Trading Schemes are helping meet specific national targets, the approach allows the entry requirements of new participants to be calculated and set at a level that will achieve these targets. The approach is multi-levelled, and may be extended downwards to support pooling of participants within instruments, or upwards to embed Emissions Trading Schemes within a wider suite of policies and measures with hard and soft targets. Aggregate emissions from each instrument are treated stochastically. Emissions from the scheme as a whole are then the joint probability distribution formed by integrating the emissions from its instruments. Because a Bayesian approach is adopted, qualitative and semi-qualitative data from expert opinion can be used where quantitative data is not currently available, or is incomplete. This approach helps government retain sufficient control over emissions trading scheme targets to allow them to meet their emissions reduction obligations, while minimising the need for retrospectively adjusting existing participants’ conditions of entry. This maintains participant confidence, while providing the necessary policy levers for good governance.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This research examined how retrospective self-assessments of performance are affected by major depression. To test the validity of the depressive realism versus the selective processing hypotheses, aggregate posttest performance estimates (PTPEs) were obtained from clinically depressed patients and an age-matched comparison group across 4 decision tasks (object recognition, general knowledge, social judgment, and line-length judgment). As expected on the basis of previous findings, both groups were underconfident in their PTPEs, consistently underestimating the percentage of questions they had answered correctly. Contrary to depressive realism, and in partial support of the selective processing account, this underconfidence effect was not reduced but modestly exacerbated in the depressed patients. Further, whereas the PTPEs of the comparison group exceeded that expected on the basis of chance alone those of the depressed individuals did not. The results provide no support for the depressive realism account and suggest that negative biases contribute to metacognitive information processing in major depression.