826 resultados para process of damage creation
Resumo:
The dynamics of the survival of recruiting fish are analyzed as evolving random processes of aggregation and mortality. The analyses draw on recent advances in the physics of complex networks and, in particular, the scale-free degree distribution arising from growing random networks with preferential attachment of links to nodes. In this study simulations were conducted in which recruiting fish 1) were subjected to mortality by using alternative mortality encounter models and 2) aggregated according to random encounters (two schools randomly encountering one another join into a single school) or preferential attachment (the probability of a successful aggregation of two schools is proportional to the school sizes). The simulations started from either a “disaggregated” (all schools comprised a single fish) or an aggregated initial condition. Results showed the transition of the school-size distribution with preferential attachment evolving toward a scale-free school size distribution, whereas random attachment evolved toward an exponential distribution. Preferential attachment strategies performed better than random attachment strategies in terms of recruitment survival at time when mortality encounters were weighted toward schools rather than to individual fish. Mathematical models were developed whose solutions (either analytic or numerical) mimicked the simulation results. The resulting models included both Beverton-Holt and Ricker-like recruitment, which predict recruitment as a function of initial mean school size as well as initial stock size. Results suggest that school-size distributions during recruitment may provide information on recruitment processes. The models also provide a template for expanding both theoretical and empirical recruitment research.
Resumo:
The feasibility of vibration data to identify damage in a population of cylindrical shells is assessed. Vibration data from a population of cylinders were measured and modal analysis was employed to obtain natural frequencies and mode shapes. The mode shapes were transformed into the Coordinate Modal Assurance Criterion (COMAC). The natural frequencies and the COMAC before and after damage for a population of structures show that modal analysis is a viable route to damage identification in a population of nominally identical cylinders. Modal energies, which are defined as the integrals of the real and imaginary components of the frequency response functions over various frequency ranges, were extracted and transformed into the Coordinate Modal Energy Assurance Criterion (COMEAC). The COMEAC before and after damage show that using modal energies is a viable approach to damage identification in a population of cylinders.
Resumo:
We have investigated the magnetization reversal process of a single chain of identical nanomagnetic dots fabricated from 30 nm thick Ni 80Fe20. The structures consist of two 5 μm wide support wires bridged with a single chain of identical dots of diameter δ in the range 100-250 nm. For fields applied perpendicular to the single chain, we observed an unusual size dependent hysteretic behavior in the magnetoresistance curve at high field. This is due to the magnetostatic interaction arising from the proximity of the magnetic charges. We are able to deduce from a simple micromagnetic simulation that the reversal process in the chain of dots with δ=100nm is mediated by a collective process of nearly coherent spin rotation. The magnetotransport measurements along the chain reveal a complex magnetization reversal process in the chain of nanomagnets. © 2002 American Institute of Physics.
Resumo:
The 4-bp deletion (-CTTT) at codon 41/42 (CD41/42) of the human beta-globin gene represents one of the most common beta-thalassemia mutations in East Asia and Southeast Asia, which is historically afflicted with endemic malaria, thus hypothetically evolvi
Resumo:
This paper explores the adoption of a whole system approach to a more sustainable and innovative design. A case study methodology was utilised to gain improved understanding of whole system design and those factors that substantially influence its success. The paper presents a framework of those factors including the requirement for trans-disciplinary skills, the dynamics of a flattened hierarchy and the need to identify relationships between parts of the system to ultimately optimise the whole. Knowing the factors that influence the process of whole system design provides designers with the knowledge necessary to more effectively work within, manage and facilitate that process. This paper uses anecdotes taken from operational cases, across design contexts, to demonstrate those factors. © 2010 Elsevier Ltd. All rights reserved.
Resumo:
In our studies, 88 human mRNA samples were collected from the Integrated Sequence-Structure database and then the dynamic process in co-transcriptional mRNA folding was simulated using the RNAstructure version 4.1 program. Through statistical analyses of the frequencies of occurrence of hairpins, a group of special folding structures-the 'common hairpins'-were identified. These 'common hairpins' have lower energies and occur in all the subsequent folding units that formed in the dynamic folding process. By applying the formulas (1)-(4) of the 'common hairpins' statistical model, 163 'common hairpins' were found, to make up about 7% of the total of 2286 hairpins. Classified studies further show that the 'common hairpins' that were studied may oscillate in the dynamic folding process. However, the hairpin loops of the 'common hairpins' and stems proximal to those 'common hairpins' loops maintain topologically stable structures, while other loops and stems distal to the 'common hairpins' loops are shown to be alterable structures. Strikingly, further studies indicate that the stable structures of these 'common hairpins' may have unbeknown effects on controlling the formation of protein structures in the translation process (unpublished results). (c) 2005 Elsevier B.V. All rights reserved.