907 resultados para power law model
Resumo:
The Sznajd model (SM) has been employed with success in the last years to describe opinion propagation in a community. In particular, it has been claimed that its transient is able to reproduce some scale properties observed in data of proportional elections, in different countries, if the community structure (the network) is scale-free. In this work, we investigate the properties of the transient of a particular version of the SM, introduced by Bernardes and co-authors in 2002. We studied the behavior of the model in networks of different topologies through the time evolution of an order parameter known as interface density, and concluded that regular lattices with high dimensionality also leads to a power-law distribution of the number of candidates with v votes. Also, we show that the particular absorbing state achieved in the stationary state (or else, the winner candidate), is related to a particular feature of the model, that may not be realistic in all situations.
The shoving model for the glass-former LiCl center dot 6H(2)O: A molecular dynamics simulation study
Resumo:
Molecular dynamics (MD) simulations of LiCl center dot 6H(2)O Showed that the diffusion coefficient D, and also I lie structural relaxation time
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
We investigate the Heston model with stochastic volatility and exponential tails as a model for the typical price fluctuations of the Brazilian São Paulo Stock Exchange Index (IBOVESPA). Raw prices are first corrected for inflation and a period spanning 15 years characterized by memoryless returns is chosen for the analysis. Model parameters are estimated by observing volatility scaling and correlation properties. We show that the Heston model with at least two time scales for the volatility mean reverting dynamics satisfactorily describes price fluctuations ranging from time scales larger than 20min to 160 days. At time scales shorter than 20 min we observe autocorrelated returns and power law tails incompatible with the Heston model. Despite major regulatory changes, hyperinflation and currency crises experienced by the Brazilian market in the period studied, the general success of the description provided may be regarded as an evidence for a general underlying dynamics of price fluctuations at intermediate mesoeconomic time scales well approximated by the Heston model. We also notice that the connection between the Heston model and Ehrenfest urn models could be exploited for bringing new insights into the microeconomic market mechanics. (c) 2005 Elsevier B.V. All rights reserved.
Resumo:
We present the zero-temperature phase diagram of the one-dimensional t(2g)-orbital Hubbard model, obtained using the density-matrix renormalization group and Lanczos techniques. Emphasis is given to the case of the electron density n=5 corresponding to five electrons per site, while several other cases for electron densities between n=3 and 6 are also studied. At n=5, our results indicate a first-order transition between a paramagnetic (PM) insulator phase, with power-law slowly decaying correlations, and a fully polarized ferromagnetic (FM) state by tuning the Hund's coupling. The results also suggest a transition from the n=5 PM insulator phase to a metallic regime by changing the electron density, either via hole or electron doping. The behavior of the spin, charge, and orbital correlation functions in the FM and PM states are also described in the text and discussed. The robustness of these two states against varying parameters suggests that they may be of relevance in quasi-one-dimensional Co-oxide materials, or even in higher dimensional cobaltite systems as well.
Resumo:
We present a model to describe inclusive meson production in e+e- reactions based on a quark cascade approach whose formulation is put in terms of diffusion equations for three quark flavors (u, d, s). These equations are solved by using a formalism previously developed for the problem of the electromagnetic cascade generated in the atmosphere by cosmicray interactions. The obtained solutions are given in terms of a combination of power-law functions whose profiles are adequate to describe the characteristics observed in the inclusive spectrum of mesons.
Resumo:
We present results of our numerical study of the critical dynamics of percolation observables for the two-dimensional Ising model. We consider the (Monte Carlo) short-time evolution of the system with small initial magnetization and heat-bath dynamics. We find qualitatively different dynamic behaviors for the magnetization M and for Ω, the so-called strength of the percolating cluster, which is the order parameter of the percolation transition. More precisely, we obtain a (leading) exponential form for Ω as a function of the Monte Carlo time t, to be compared with the power-law increase encountered for M at short times. Our results suggest that, although the descriptions in terms of magnetic or percolation order parameters may be equivalent in the equilibrium regime, greater care must be taken to interpret percolation observables at short times.
Resumo:
Some dynamical properties for a bouncing ball model are studied. We show that when dissipation is introduced the structure of the phase space is changed and attractors appear. Increasing the amount of dissipation, the edges of the basins of attraction of an attracting fixed point touch the chaotic attractor. Consequently the chaotic attractor and its basin of attraction are destroyed given place to a transient described by a power law with exponent -2. The parameter-space is also studied and we show that it presents a rich structure with infinite self-similar structures of shrimp-shape. © 2013 Elsevier B.V. All rights reserved.
Resumo:
Processo FAPESP: 11/08171-3
Resumo:
Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)
Resumo:
Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
In this paper we investigate the quantum phase transition from magnetic Bose Glass to magnetic Bose-Einstein condensation induced by amagnetic field in NiCl2 center dot 4SC(NH2)(2) (dichloro-tetrakis-thiourea-nickel, or DTN), doped with Br (Br-DTN) or site diluted. Quantum Monte Carlo simulations for the quantum phase transition of the model Hamiltonian for Br-DTN, as well as for site-diluted DTN, are consistent with conventional scaling at the quantum critical point and with a critical exponent z verifying the prediction z = d; moreover the correlation length exponent is found to be nu = 0.75(10), and the order parameter exponent to be beta = 0.95(10). We investigate the low-temperature thermodynamics at the quantum critical field of Br-DTN both numerically and experimentally, and extract the power-law behavior of the magnetization and of the specific heat. Our results for the exponents of the power laws, as well as previous results for the scaling of the critical temperature to magnetic ordering with the applied field, are incompatible with the conventional crossover-scaling Ansatz proposed by Fisher et al. [Phys. Rev. B 40, 546 (1989)]. However they can all be reconciled within a phenomenological Ansatz in the presence of a dangerously irrelevant operator.
Resumo:
Heart rate variability (HRV) exhibits fluctuations characterized by a power law behavior of its power spectrum. The interpretation of this nonlinear HRV behavior, resulting from interactions between extracardiac regulatory mechanisms, could be clinically useful. However, the involvement of intrinsic variations of pacemaker rate in HRV has scarcely been investigated. We examined beating variability in spontaneously active incubating cultures of neonatal rat ventricular myocytes using microelectrode arrays. In networks of mathematical model pacemaker cells, we evaluated the variability induced by the stochastic gating of transmembrane currents and of calcium release channels and by the dynamic turnover of ion channels. In the cultures, spontaneous activity originated from a mobile focus. Both the beat-to-beat movement of the focus and beat rate variability exhibited a power law behavior. In the model networks, stochastic fluctuations in transmembrane currents and stochastic gating of calcium release channels did not reproduce the spatiotemporal patterns observed in vitro. In contrast, long-term correlations produced by the turnover of ion channels induced variability patterns with a power law behavior similar to those observed experimentally. Therefore, phenomena leading to long-term correlated variations in pacemaker cellular function may, in conjunction with extracardiac regulatory mechanisms, contribute to the nonlinear characteristics of HRV.