885 resultados para post-structural theory
Resumo:
To be diagnostically useful, structural MRI must reliably distinguish Alzheimer's disease (AD) from normal aging in individual scans. Recent advances in statistical learning theory have led to the application of support vector machines to MRI for detection of a variety of disease states. The aims of this study were to assess how successfully support vector machines assigned individual diagnoses and to determine whether data-sets combined from multiple scanners and different centres could be used to obtain effective classification of scans. We used linear support vector machines to classify the grey matter segment of T1-weighted MR scans from pathologically proven AD patients and cognitively normal elderly individuals obtained from two centres with different scanning equipment. Because the clinical diagnosis of mild AD is difficult we also tested the ability of support vector machines to differentiate control scans from patients without post-mortem confirmation. Finally we sought to use these methods to differentiate scans between patients suffering from AD from those with frontotemporal lobar degeneration. Up to 96% of pathologically verified AD patients were correctly classified using whole brain images. Data from different centres were successfully combined achieving comparable results from the separate analyses. Importantly, data from one centre could be used to train a support vector machine to accurately differentiate AD and normal ageing scans obtained from another centre with different subjects and different scanner equipment. Patients with mild, clinically probable AD and age/sex matched controls were correctly separated in 89% of cases which is compatible with published diagnosis rates in the best clinical centres. This method correctly assigned 89% of patients with post-mortem confirmed diagnosis of either AD or frontotemporal lobar degeneration to their respective group. Our study leads to three conclusions: Firstly, support vector machines successfully separate patients with AD from healthy aging subjects. Secondly, they perform well in the differential diagnosis of two different forms of dementia. Thirdly, the method is robust and can be generalized across different centres. This suggests an important role for computer based diagnostic image analysis for clinical practice.
Resumo:
In recent years there has been an explosive growth in the development of adaptive and data driven methods. One of the efficient and data-driven approaches is based on statistical learning theory (Vapnik 1998). The theory is based on Structural Risk Minimisation (SRM) principle and has a solid statistical background. When applying SRM we are trying not only to reduce training error ? to fit the available data with a model, but also to reduce the complexity of the model and to reduce generalisation error. Many nonlinear learning procedures recently developed in neural networks and statistics can be understood and interpreted in terms of the structural risk minimisation inductive principle. A recent methodology based on SRM is called Support Vector Machines (SVM). At present SLT is still under intensive development and SVM find new areas of application (www.kernel-machines.org). SVM develop robust and non linear data models with excellent generalisation abilities that is very important both for monitoring and forecasting. SVM are extremely good when input space is high dimensional and training data set i not big enough to develop corresponding nonlinear model. Moreover, SVM use only support vectors to derive decision boundaries. It opens a way to sampling optimization, estimation of noise in data, quantification of data redundancy etc. Presentation of SVM for spatially distributed data is given in (Kanevski and Maignan 2004).
Resumo:
This article designs what it calls a Credit-Risk Balance Sheet (the risk being that of default by customers), a tool which, in principle, can contribute to revealing, controlling and managing the bad debt risk arising from a company¿s commercial credit, whose amount can represent a significant proportion of both its current and total assets.To construct it, we start from the duality observed in any credit transaction of this nature, whose basic identity can be summed up as Credit = Risk. ¿Credit¿ is granted by a company to its customer, and can be ranked by quality (we suggest the credit scoring system) and ¿risk¿ can either be assumed (interiorised) by the company itself or transferred to third parties (exteriorised).What provides the approach that leads to us being able to talk with confidence of a real Credit-Risk Balance Sheet with its methodological robustness is that the dual vision of the credit transaction is not, as we demonstrate, merely a classificatory duality (a double risk-credit classification of reality) but rather a true causal relationship, that is, a risk-credit causal duality.Once said Credit-Risk Balance Sheet (which bears a certain structural similarity with the classic net asset balance sheet) has been built, and its methodological coherence demonstrated, its properties ¿static and dynamic¿ are studied.Analysis of the temporal evolution of the Credit-Risk Balance Sheet and of its applications will be the object of subsequent works.
Resumo:
This article has an immediate predecessor, upon which it is based and with which readers must necessarily be familiar: Towards a Theory of the Credit-Risk Balance Sheet (Vallverdú, Somoza and Moya, 2006). The Balance Sheet is conceptualised on the basis of the duality of a credit-based transaction; it deals with its theoretical foundations, providing evidence of a causal credit-risk duality, that is, a true causal relationship; its characteristics, properties and its static and dynamic characteristics are analyzed. This article, which provides a logical continuation to the previous one, studies the evolution of the structure of the Credit-Risk Balance Sheet as a consequence of a business¿s dynamics in the credit area. Given the Credit-Risk Balance Sheet of a company at any given time, it attempts to estimate, by means of sequential analysis, its structural evolution, showing its usefulness in the management and control of credit and risk. To do this, it bases itself, with the necessary adaptations, on the by-now classic works of Palomba and Cutolo. The establishment of the corresponding transformation matrices allows one to move from an initial balance sheet structure to a final, future one, to understand its credit-risk situation trends, as well as to make possible its monitoring and control, basic elements in providing support for risk management.
Resumo:
This article designs what it calls a Credit-Risk Balance Sheet (the risk being that of default by customers), a tool which, in principle, can contribute to revealing, controlling and managing the bad debt risk arising from a company¿s commercial credit, whose amount can represent a significant proportion of both its current and total assets.To construct it, we start from the duality observed in any credit transaction of this nature, whose basic identity can be summed up as Credit = Risk. ¿Credit¿ is granted by a company to its customer, and can be ranked by quality (we suggest the credit scoring system) and ¿risk¿ can either be assumed (interiorised) by the company itself or transferred to third parties (exteriorised).What provides the approach that leads to us being able to talk with confidence of a real Credit-Risk Balance Sheet with its methodological robustness is that the dual vision of the credit transaction is not, as we demonstrate, merely a classificatory duality (a double risk-credit classification of reality) but rather a true causal relationship, that is, a risk-credit causal duality.Once said Credit-Risk Balance Sheet (which bears a certain structural similarity with the classic net asset balance sheet) has been built, and its methodological coherence demonstrated, its properties ¿static and dynamic¿ are studied.Analysis of the temporal evolution of the Credit-Risk Balance Sheet and of its applications will be the object of subsequent works.
Resumo:
This article has an immediate predecessor, upon which it is based and with which readers must necessarily be familiar: Towards a Theory of the Credit-Risk Balance Sheet (Vallverdú, Somoza and Moya, 2006). The Balance Sheet is conceptualised on the basis of the duality of a credit-based transaction; it deals with its theoretical foundations, providing evidence of a causal credit-risk duality, that is, a true causal relationship; its characteristics, properties and its static and dynamic characteristics are analyzed. This article, which provides a logical continuation to the previous one, studies the evolution of the structure of the Credit-Risk Balance Sheet as a consequence of a business¿s dynamics in the credit area. Given the Credit-Risk Balance Sheet of a company at any given time, it attempts to estimate, by means of sequential analysis, its structural evolution, showing its usefulness in the management and control of credit and risk. To do this, it bases itself, with the necessary adaptations, on the by-now classic works of Palomba and Cutolo. The establishment of the corresponding transformation matrices allows one to move from an initial balance sheet structure to a final, future one, to understand its credit-risk situation trends, as well as to make possible its monitoring and control, basic elements in providing support for risk management.
Resumo:
A sequential weakly efficient two-auction game with entry costs, interdependence between objects, two potential bidders and IPV assumption is presented here in order to give some theoretical predictions on the effects of geographical scale economies on local service privatization performance. It is shown that the first object seller takes profit of this interdependence. The interdependence externality rises effective competition for the first object, expressed as the probability of having more than one final bidder. Besides, if there is more than one final bidder in the first auction, seller extracts the entire bidder¿s expected future surplus differential between having won the first auction and having lost. Consequences for second object seller are less clear, reflecting the contradictory nature of the two main effects of object interdependence. On the one hand, first auction winner becomes ¿stronger¿, so that expected payments rise in a competitive environment. On the other hand, first auction loser becomes relatively ¿weaker¿, hence (probably) reducing effective competition for the second object. Additionally, some contributions to static auction theory with entry cost and asymmetric bidders are presented in the appendix
Resumo:
Executive Summary The unifying theme of this thesis is the pursuit of a satisfactory ways to quantify the riskureward trade-off in financial economics. First in the context of a general asset pricing model, then across models and finally across country borders. The guiding principle in that pursuit was to seek innovative solutions by combining ideas from different fields in economics and broad scientific research. For example, in the first part of this thesis we sought a fruitful application of strong existence results in utility theory to topics in asset pricing. In the second part we implement an idea from the field of fuzzy set theory to the optimal portfolio selection problem, while the third part of this thesis is to the best of our knowledge, the first empirical application of some general results in asset pricing in incomplete markets to the important topic of measurement of financial integration. While the first two parts of this thesis effectively combine well-known ways to quantify the risk-reward trade-offs the third one can be viewed as an empirical verification of the usefulness of the so-called "good deal bounds" theory in designing risk-sensitive pricing bounds. Chapter 1 develops a discrete-time asset pricing model, based on a novel ordinally equivalent representation of recursive utility. To the best of our knowledge, we are the first to use a member of a novel class of recursive utility generators to construct a representative agent model to address some long-lasting issues in asset pricing. Applying strong representation results allows us to show that the model features countercyclical risk premia, for both consumption and financial risk, together with low and procyclical risk free rate. As the recursive utility used nests as a special case the well-known time-state separable utility, all results nest the corresponding ones from the standard model and thus shed light on its well-known shortcomings. The empirical investigation to support these theoretical results, however, showed that as long as one resorts to econometric methods based on approximating conditional moments with unconditional ones, it is not possible to distinguish the model we propose from the standard one. Chapter 2 is a join work with Sergei Sontchik. There we provide theoretical and empirical motivation for aggregation of performance measures. The main idea is that as it makes sense to apply several performance measures ex-post, it also makes sense to base optimal portfolio selection on ex-ante maximization of as many possible performance measures as desired. We thus offer a concrete algorithm for optimal portfolio selection via ex-ante optimization over different horizons of several risk-return trade-offs simultaneously. An empirical application of that algorithm, using seven popular performance measures, suggests that realized returns feature better distributional characteristics relative to those of realized returns from portfolio strategies optimal with respect to single performance measures. When comparing the distributions of realized returns we used two partial risk-reward orderings first and second order stochastic dominance. We first used the Kolmogorov Smirnov test to determine if the two distributions are indeed different, which combined with a visual inspection allowed us to demonstrate that the way we propose to aggregate performance measures leads to portfolio realized returns that first order stochastically dominate the ones that result from optimization only with respect to, for example, Treynor ratio and Jensen's alpha. We checked for second order stochastic dominance via point wise comparison of the so-called absolute Lorenz curve, or the sequence of expected shortfalls for a range of quantiles. As soon as the plot of the absolute Lorenz curve for the aggregated performance measures was above the one corresponding to each individual measure, we were tempted to conclude that the algorithm we propose leads to portfolio returns distribution that second order stochastically dominates virtually all performance measures considered. Chapter 3 proposes a measure of financial integration, based on recent advances in asset pricing in incomplete markets. Given a base market (a set of traded assets) and an index of another market, we propose to measure financial integration through time by the size of the spread between the pricing bounds of the market index, relative to the base market. The bigger the spread around country index A, viewed from market B, the less integrated markets A and B are. We investigate the presence of structural breaks in the size of the spread for EMU member country indices before and after the introduction of the Euro. We find evidence that both the level and the volatility of our financial integration measure increased after the introduction of the Euro. That counterintuitive result suggests the presence of an inherent weakness in the attempt to measure financial integration independently of economic fundamentals. Nevertheless, the results about the bounds on the risk free rate appear plausible from the view point of existing economic theory about the impact of integration on interest rates.
Resumo:
Introduction. Development of the fetal brain surfacewith concomitant gyrification is one of the majormaturational processes of the human brain. Firstdelineated by postmortem studies or by ultrasound, MRIhas recently become a powerful tool for studying in vivothe structural correlates of brain maturation. However,the quantitative measurement of fetal brain developmentis a major challenge because of the movement of the fetusinside the amniotic cavity, the poor spatial resolution,the partial volume effect and the changing appearance ofthe developing brain. Today extensive efforts are made todeal with the âeurooepost-acquisitionâeuro reconstruction ofhigh-resolution 3D fetal volumes based on severalacquisitions with lower resolution (Rousseau, F., 2006;Jiang, S., 2007). We here propose a framework devoted tothe segmentation of the basal ganglia, the gray-whitetissue segmentation, and in turn the 3D corticalreconstruction of the fetal brain. Method. Prenatal MRimaging was performed with a 1-T system (GE MedicalSystems, Milwaukee) using single shot fast spin echo(ssFSE) sequences in fetuses aged from 29 to 32gestational weeks (slice thickness 5.4mm, in planespatial resolution 1.09mm). For each fetus, 6 axialvolumes shifted by 1 mm were acquired (about 1 min pervolume). First, each volume is manually segmented toextract fetal brain from surrounding fetal and maternaltissues. Inhomogeneity intensity correction and linearintensity normalization are then performed. A highspatial resolution image of isotropic voxel size of 1.09mm is created for each fetus as previously published byothers (Rousseau, F., 2006). B-splines are used for thescattered data interpolation (Lee, 1997). Then, basalganglia segmentation is performed on this superreconstructed volume using active contour framework witha Level Set implementation (Bach Cuadra, M., 2010). Oncebasal ganglia are removed from the image, brain tissuesegmentation is performed (Bach Cuadra, M., 2009). Theresulting white matter image is then binarized andfurther given as an input in the Freesurfer software(http://surfer.nmr.mgh.harvard.edu/) to provide accuratethree-dimensional reconstructions of the fetal brain.Results. High-resolution images of the cerebral fetalbrain, as obtained from the low-resolution acquired MRI,are presented for 4 subjects of age ranging from 29 to 32GA. An example is depicted in Figure 1. Accuracy in theautomated basal ganglia segmentation is compared withmanual segmentation using measurement of Dice similarity(DSI), with values above 0.7 considering to be a verygood agreement. In our sample we observed DSI valuesbetween 0.785 and 0.856. We further show the results ofgray-white matter segmentation overlaid on thehigh-resolution gray-scale images. The results arevisually checked for accuracy using the same principlesas commonly accepted in adult neuroimaging. Preliminary3D cortical reconstructions of the fetal brain are shownin Figure 2. Conclusion. We hereby present a completepipeline for the automated extraction of accuratethree-dimensional cortical surface of the fetal brain.These results are preliminary but promising, with theultimate goal to provide âeurooemovieâeuro of the normal gyraldevelopment. In turn, a precise knowledge of the normalfetal brain development will allow the quantification ofsubtle and early but clinically relevant deviations.Moreover, a precise understanding of the gyraldevelopment process may help to build hypotheses tounderstand the pathogenesis of several neurodevelopmentalconditions in which gyrification have been shown to bealtered (e.g. schizophrenia, autismâeuro¦). References.Rousseau, F. (2006), 'Registration-Based Approach forReconstruction of High-Resolution In Utero Fetal MR Brainimages', IEEE Transactions on Medical Imaging, vol. 13,no. 9, pp. 1072-1081. Jiang, S. (2007), 'MRI of MovingSubjects Using Multislice Snapshot Images With VolumeReconstruction (SVR): Application to Fetal, Neonatal, andAdult Brain Studies', IEEE Transactions on MedicalImaging, vol. 26, no. 7, pp. 967-980. Lee, S. (1997),'Scattered data interpolation with multilevel B-splines',IEEE Transactions on Visualization and Computer Graphics,vol. 3, no. 3, pp. 228-244. Bach Cuadra, M. (2010),'Central and Cortical Gray Mater Segmentation of MagneticResonance Images of the Fetal Brain', ISMRM Conference.Bach Cuadra, M. (2009), 'Brain tissue segmentation offetal MR images', MICCAI.
Resumo:
The low-temperature isothermal magnetization curves, M(H), of SmCo4 and Fe3Tb thin films are studied according to the two-dimensional correlated spin-glass model of Chudnovsky. We have calculated the magnetization law in approach to saturation and shown that the M(H) data fit well the theory at high and low fields. In our fit procedure we have used three different correlation functions. The Gaussian decay correlation function fits well the experimental data for both samples.
Resumo:
There is growing interest in understanding the role of the non-injured contra-lateral hemisphere in stroke recovery. In the experimental field, histological evidence has been reported that structural changes occur in the contra-lateral connectivity and circuits during stroke recovery. In humans, some recent imaging studies indicated that contra-lateral sub-cortical pathways and functional and structural cortical networks are remodeling, after stroke. Structural changes in the contra-lateral networks, however, have never been correlated to clinical recovery in patients. To determine the importance of the contra-lateral structural changes in post-stroke recovery, we selected a population of patients with motor deficits after stroke affecting the motor cortex and/or sub-cortical motor white matter. We explored i) the presence of Generalized Fractional Anisotropy (GFA) changes indicating structural alterations in the motor network of patientsâeuro? contra-lateral hemisphere as well as their longitudinal evolution ii) the correlation of GFA changes with patientsâeuro? clinical scores, stroke size and demographics data iii) and a predictive model.
Resumo:
Higher risk for long-term behavioral and emotional sequelae, with attentional problems (with or without hyperactivity) is now becoming one of the hallmarks of extreme premature (EP) birth and birth after pregancy conditions leading to poor intra uterine growth restriction (IUGR) [1,2]. However, little is know so far about the neurostructural basis of these complexe brain functional abnormalities that seem to have their origins in early critical periods of brain development. The development of cortical axonal pathways happens in a series of sequential events. The preterm phase (24-36 post conecptional weeks PCW) is known for being crucial for growth of the thalamocortical fiber bundles as well as for the development of long projectional, commisural and projectional fibers [3]. Is it logical to expect, thus, that being exposed to altered intrauterine environment (altered nutrition) or to extrauterine environment earlier that expected, lead to alterations in the structural organization and, consequently, alter the underlying white matter (WM) structure. Understanding rate and variability of normal brain development, and detect differences from typical development may offer insight into the neurodevelopmental anomalies that can be imaged at later stages. Due to its unique ability to non-invasively visualize and quantify in vivo white matter tracts in the brain, in this study we used diffusion MRI (dMRI) tractography to derive brain graphs [4,5,6]. This relatively simple way of modeling the brain enable us to use graph theory to study topological properties of brain graphs in order to study the effects of EP and IUGR on childrens brain connectivity at age 6 years old.
Resumo:
Schizophrenia is postulated to be the prototypical dysconnection disorder, in which hallucinations are the core symptom. Due to high heterogeneity in methodology across studies and the clinical phenotype, it remains unclear whether the structural brain dysconnection is global or focal and if clinical symptoms result from this dysconnection. In the present work, we attempt to clarify this issue by studying a population considered as a homogeneous genetic sub-type of schizophrenia, namely the 22q11.2 deletion syndrome (22q11.2DS). Cerebral MRIs were acquired for 46 patients and 48 age and gender matched controls (aged 6-26, respectively mean age = 15.20 ± 4.53 and 15.28 ± 4.35 years old). Using the Connectome mapper pipeline (connectomics.org) that combines structural and diffusion MRI, we created a whole brain network for each individual. Graph theory was used to quantify the global and local properties of the brain network organization for each participant. A global degree loss of 6% was found in patients' networks along with an increased Characteristic Path Length. After identifying and comparing hubs, a significant loss of degree in patients' hubs was found in 58% of the hubs. Based on Allen's brain network model for hallucinations, we explored the association between local efficiency and symptom severity. Negative correlations were found in the Broca's area (p < 0.004), the Wernicke area (p < 0.023) and a positive correlation was found in the dorsolateral prefrontal cortex (DLPFC) (p < 0.014). In line with the dysconnection findings in schizophrenia, our results provide preliminary evidence for a targeted alteration in the brain network hubs' organization in individuals with a genetic risk for schizophrenia. The study of specific disorganization in language, speech and thought regulation networks sharing similar network properties may help to understand their role in the hallucination mechanism.
Resumo:
We study the details of electronic transport related to the atomistic structure of silicon quantum dots embedded in a silicon dioxide matrix using ab initio calculations of the density of states. Several structural and composition features of quantum dots (QDs), such as diameter and amorphization level, are studied and correlated with transport under transfer Hamiltonian formalism. The current is strongly dependent on the QD density of states and on the conduction gap, both dependent on the dot diameter. In particular, as size increases, the available states inside the QD increase, while the QD band gap decreases due to relaxation of quantum confinement. Both effects contribute to increasing the current with the dot size. Besides, valence band offset between the band edges of the QD and the silica, and conduction band offset in a minor grade, increases with the QD diameter up to the theoretical value corresponding to planar heterostructures, thus decreasing the tunneling transmission probability and hence the total current. We discuss the influence of these parameters on electron and hole transport, evidencing a correlation between the electron (hole) barrier value and the electron (hole) current, and obtaining a general enhancement of the electron (hole) transport for larger (smaller) QD. Finally, we show that crystalline and amorphous structures exhibit enhanced probability of hole and electron current, respectively.