923 resultados para positron emission particle tracking
Resumo:
Traumatic brain injury (TBI) has been increasingly accepted as a major external risk factor for neurodegenerative morbidity and mortality. Recent evidence indicates that the resultant chronic neurobiological sequelae following head trauma may, at least in part, contribute to a pathologically distinct disease known as Chronic Traumatic Encephalopathy (CTE). The clinical manifestation of CTE is variable, but the symptoms of this progressive disease include impaired memory and cognition, affective disorders (i.e., impulsivity, aggression, depression, suicidality, etc.), and diminished motor control. Notably, mounting evidence suggests that the pathology contributing to CTE may be caused by repetitive exposure to subconcussive hits to the head, even in those with no history of a clinically evident head injury. Given the millions of athletes and military personnel with potential exposure to repetitive subconcussive insults and TBI, CTE represents an important public health issue. However, the incidence rates and pathological mechanisms are still largely unknown, primarily due to the fact that there is no in vivo diagnostic tool. The primary objective of this manuscript is to address this limitation and discuss potential neuroimaging modalities that may be capable of diagnosing CTE in vivo through the detection of tau and other known pathological features. Additionally, we will discuss the challenges of TBI research, outline the known pathology of CTE (with an emphasis on Tau), review current neuroimaging modalities to assess the potential routes for in vivo diagnosis, and discuss the future directions of CTE research.
Resumo:
Preclinical imaging has a critical role in phenotyping, in drug discovery, and in providing a basic understanding of mechanisms of disease. Translating imaging methods from humans to small animals is not an easy task. The purpose of this work is to review high-resolution computed tomography (CT) also known as micro-CT for small-animal imaging. We present the principles, the technologies, the image quality parameters, and the types of applications. We show that micro-CT can be used to provide not only morphological but also functional information such as cardiac function or vascular permeability. Another way in which micro-CT can be used in the study of both function and anatomy is by combining it with other imaging modalities, such as positron emission tomography or single-photon emission tomography. Compared to other modalities, micro-CT imaging is usually regarded as being able to provide higher throughput at lower cost and higher resolution. The limitations are usually associated with the relatively poor contrast mechanisms and the radiation damage, although the use of novel nanoparticle-based contrast agents and careful design of studies can address these limitations.
Resumo:
INTRODUCTION: Malignant gliomas frequently harbor mutations in the isocitrate dehydrogenase 1 (IDH1) gene. Studies suggest that IDH mutation contributes to tumor pathogenesis through mechanisms that are mediated by the neomorphic metabolite of the mutant IDH1 enzyme, 2-hydroxyglutarate (2-HG). The aim of this work was to synthesize and evaluate radiolabeled compounds that bind to the mutant IDH1 enzyme with the goal of enabling noninvasive imaging of mutant IDH1 expression in gliomas by positron emission tomography (PET). METHODS: A small library of nonradioactive analogs were designed and synthesized based on the chemical structure of reported butyl-phenyl sulfonamide inhibitors of mutant IDH1. Enzyme inhibition assays were conducted using purified mutant IDH1 enzyme, IDH1-R132H, to determine the IC50 and the maximal inhibitory efficiency of the synthesized compounds. Selected compounds, 1 and 4, were labeled with radioiodine ((125)I) and/or (18)F using bromo- and phenol precursors, respectively. In vivo behavior of the labeled inhibitors was studied by conducting tissue distribution studies with [(125)I]1 in normal mice. Cell uptake studies were conducted using an isogenic astrocytoma cell line that carried a native IDH1-R132H mutation to evaluate the potential uptake of the labeled inhibitors in IDH1-mutated tumor cells. RESULTS: Enzyme inhibition assays showed good inhibitory potency for compounds that have iodine or a fluoroethoxy substituent at the ortho position of the phenyl ring in compounds 1 and 4 with IC50 values of 1.7 μM and 2.3 μM, respectively. Compounds 1 and 4 inhibited mutant IDH1 activity and decreased the production of 2-HG in an IDH1-mutated astrocytoma cell line. Radiolabeling of 1 and 4 was achieved with an average radiochemical yield of 56.6 ± 20.1% for [(125)I]1 (n = 4) and 67.5 ± 6.6% for [(18)F]4 (n = 3). [(125)I]1 exhibited favorable biodistribution characteristics in normal mice, with rapid clearance from the blood and elimination via the hepatobiliary system by 4 h after injection. The uptake of [(125)I]1 in tumor cells positive for IDH1-R132H was significantly higher compared to isogenic WT-IDH1 controls, with a maximal uptake ratio of 1.67 at 3 h post injection. Co-incubation of the labeled inhibitors with the corresponding nonradioactive analogs, and decreasing the normal concentrations of FBS (10%) in the incubation media substantially increased the uptake of the labeled inhibitors in both the IDH1-mutant and WT-IDH1 tumor cell lines, suggesting significant non-specific binding of the synthesized labeled butyl-phenyl sulfonamide inhibitors. CONCLUSIONS: These data demonstrate the feasibility of developing radiolabeled probes for the mutant IDH1 enzyme based on enzyme inhibitors. Further optimization of the labeled inhibitors by modifying the chemical structure to decrease the lipophilicity and to increase potency may yield compounds with improved characteristics as probes for imaging mutant IDH1 expression in tumors.
Resumo:
In this paper, the continuous casting process for steel slab production is modelled using a mult-physics approach. For this purpose, a Finite Volume (FV) numerical model was constructed in 3D, with the following characteristics: Time dependent, turbulent fluid flow and heat transfer in the molten steel and flux regions, solidification of the skin layer, under prescribed heat loss boundary conditions, particle tracking simulation of argon bubbles injected with the metal into the mould, full coupling between bubbles and liquid through buoyancy and interfacial forces using a novel gas accumulation technique, and a full transient simulation of flux-metal interface behaviour under the influence of gravity and fluid inertial forces and bubble plume buoyancy. The unstructure mesh FV code PHYSICA developed at Greenwich was used for carry out the simulations with physical process data and properties supplied by IRSID SA.
Resumo:
Melting of metallic samples in a cold crucible causes inclusions to concentrate on the surface owing to the action of the electromagnetic force in the skin layer. This process is dynamic, involving the melting stage, then quasi-stationary particle separation, and finally the solidification in the cold crucible. The proposed modeling technique is based on the pseudospectral solution method for coupled turbulent fluid flow, thermal and electromagnetic fields within the time varying fluid volume contained by the free surface, and partially the solid crucible wall. The model uses two methods for particle tracking: (1) a direct Lagrangian particle path computation and (2) a drifting concentration model. Lagrangian tracking is implemented for arbitrary unsteady flow. A specific numerical time integration scheme is implemented using implicit advancement that permits relatively large time-steps in the Lagrangian model. The drifting concentration model is based on a local equilibrium drift velocity assumption. Both methods are compared and demonstrated to give qualitatively similar results for stationary flow situations. The particular results presented are obtained for iron alloys. Small size particles of the order of 1 μm are shown to be less prone to separation by electromagnetic field action. In contrast, larger particles, 10 to 100 μm, are easily “trapped” by the electromagnetic field and stay on the sample surface at predetermined locations depending on their size and properties. The model allows optimization for melting power, geometry, and solidification rate.
Resumo:
Non-invasive real time in vivo molecular imaging in small animal models has become the essential bridge between in vitro data and their translation into clinical applications. The tremendous development and technological progress, such as tumour modelling, monitoring of tumour growth and detection of metastasis, has facilitated translational drug development. This has added to our knowledge on carcinogenesis. The modalities that are commonly used include Magnetic Resonance Imaging (MRI), Computed Tomography (CT), Positron Emission Tomography (PET), bioluminescence imaging, fluorescence imaging and multi-modality imaging systems. The ability to obtain multiple images longitudinally provides reliable information whilst reducing animal numbers. As yet there is no one modality that is ideal for all experimental studies. This review outlines the instrumentation available together with corresponding applications reported in the literature with particular emphasis on cancer research. Advantages and limitations to current imaging technology are discussed and the issues concerning small animal care during imaging are highlighted.
Resumo:
Purpose: Positron emission tomography (PET), in addition to computed tomography (CT), has an effect in target volume definition for radical radiotherapy (RT) for non–small-cell lung cancer (NSCLC). In previously PET-CT staged patients with NSCLC, we assessed the effect of using an additional planning PET-CT scan for gross tumor volume (GTV) definition. Methods and Materials: A total of 28 patients with Stage IA-IIIB NSCLC were enrolled. All patients had undergone staging PET-CT to ensure suitability for radical RT. Of the 28 patients, 14 received induction chemotherapy. In place of a RT planning CT scan, patients underwent scanning on a PET-CT scanner. In a virtual planning study, four oncologists independently delineated the GTVon the CT scan alone and then on the PET-CTscan. Intraobserver and interobserver variability were assessed using the concordance index (CI), and the results were compared using the Wilcoxon signed ranks test. Results: PET-CT improved the CI between observers when defining the GTVusing the PET-CT images compared with using CTalone for matched cases (median CI, 0.57 for CTand 0.64 for PET-CT, p = .032). The median of the mean percentage of volume change from GTVCT to GTVFUSED was 5.21% for the induction chemotherapy group and 18.88% for the RT-alone group. Using the Mann-Whitney U test, this was significantly different (p = .001). Conclusion: PET-CT RT planning scan, in addition to a staging PET-CT scan, reduces interobserver variability in GTV definition for NSCLC. The GTV size with PET-CT compared with CT in the RT-alone group increased and was reduced in the induction chemotherapy group.
Resumo:
The acquisition of radiotherapy planning scans on positron emission tomography (PET)-CT scanners requires the involvement of radiotherapy radiographers. This study assessed the radiation dose received by these radiographers during this process. Radiotherapy planning F- fluorodeoxyglucose (F-FDG) PET-CT scans were acquired for 28 non-small cell lung cancer patients. In order to minimise the radiation dose received, a two-stage process was used in which the most time-consuming part of the set-up was performed before the patient received their F-FDG injection. Throughout this process, the radiographers wore electronic personal dosemeters and recorded the doses received at different stages of the process. The mean total radiation dose received by a radiotherapy radiographer was 5.1±2.6 mSv per patient. The use of the two-stage process reduced the time spent in close proximity to the patient by approximately a factor of four. The two-stage process was effective in keeping radiation dose to a minimum. The use of a pre-injection set-up session reduces the radiation dose to the radiotherapy radiographers because of their involvement in PET-CT radiotherapy treatment planning scans by approximately a factor of three.
Resumo:
The introduction of functional data into the radiotherapy treatment planning process is currently the focus of significant commercial, technical, scientific and clinical development. The potential of such data from positron emission tomography (PET) was recognized at an early stage and was integrated into the radiotherapy treatment planning process through the use of image fusion software. The combination of PET and CT in a single system (PET/CT) to form an inherently fused anatomical and functional dataset has provided an imaging modality which could be used as the prime tool in the delineation of tumour volumes and the preparation of patient treatment plans, especially when integrated with virtual simulation. PET imaging typically using F-Fluorodeoxyglucose (F-FDG) can provide data on metabolically active tumour volumes. These functional data have the potential to modify treatment volumes and to guide treatment delivery to cells with particular metabolic characteristics. This paper reviews the current status of the integration of PET and PET/CT data into the radiotherapy treatment process. Consideration is given to the requirements of PET/CT data acquisition with reference to patient positioning aids and the limitations imposed by the PET/CT system. It also reviews the approaches being taken to the definition of functional/ tumour volumes and the mechanisms available to measure and include physiological motion into the imaging process. The use of PET data must be based upon a clear understanding of the interpretation and limitations of the functional signal. Protocols for the implementation of this development remain to be defined, and outcomes data based upon clinical trials are still awaited. © 2006 The British Institute of Radiology.
Resumo:
We know considerably more about what makes cells and tissues resistant or sensitive to radiation than we did 20 years ago. Novel techniques in molecular biology have made a major contribution to our understanding at the level of signalling pathways. Before the “New Biology” era, radioresponsiveness was defined in terms of physiological parameters designated as the five Rs. These are: repair, repopulation, reassortment, reoxygenation and radiosensitivity. Of these, only the role of hypoxia proved to be a robust predictive and prognostic marker, but radiotherapy regimens were nonetheless modified in terms of dose per fraction, fraction size and overall time, in ways that persist in clinical practice today. The first molecular techniques were applied to radiobiology about two decades ago and soon revealed the existence of genes/proteins that respond to and influence the cellular outcome of irradiation. The subsequent development of screening techniques using microarray technology has since revealed that a very large number of genes fall into this category. We can now obtain an adequately robust molecular signature, predicting for a radioresponsive phenotype using gene expression and proteomic approaches. In parallel with these developments, functional magnetic resonance imaging (fMRI) and positron emission tomography (PET) can now detect specific biological molecules such as haemoglobin and glucose, so revealing a 3D map of tumour blood flow and metabolism. The key to personalised radiotherapy will be to extend this capability to the proteins of the molecular signature that determine radiosensitivity.
Resumo:
Objective: Positron emission tomography (PET)/CT scans can improve target definition in radiotherapy for non-small cell lung cancer (NSCLC). As staging PET/CT scans are increasingly available, we evaluated different methods for co-registration of staging PET/CT data to radiotherapy simulation (RTP) scans.
Methods: 10 patients underwent staging PET/CT followed by RTP PET/CT. On both scans, gross tumour volumes (GTVs) were delineated using CT (GTVCT) and PET display settings. Four PET-based contours (manual delineation, two threshold methods and a source-to-background ratio method) were delineated. The CT component of the staging scan was co-registered using both rigid and deformable techniques to the CT component of RTP PET/CT. Subsequently rigid registration and deformation warps were used to transfer PET and CT contours from the staging scan to the RTP scan. Dice’s similarity coefficient (DSC) was used to assess the registration accuracy of staging-based GTVs following both registration methods with the GTVs delineated on the RTP PET/CT scan.
Results: When the GTVCT delineated on the staging scan after both rigid registration and deformation was compared with the GTVCT on the RTP scan, a significant improvement in overlap (registration) using deformation was observed (mean DSC 0.66 for rigid registration and 0.82 for deformable registration, p50.008). A similar comparison for PET contours revealed no significant improvement in overlap with the use of deformable registration.
Conclusions: No consistent improvements in similarity measures were observed when deformable registration was used for transferring PET-based contours from a staging PET/CT. This suggests that currently the use of rigid registration remains the most appropriate method for RTP in NSCLC.
Resumo:
OBJECTIVE: There is a widely recognised need to develop effective Alzheimer's disease (AD) biomarkers to aid the development of disease-modifying treatments, to facilitate early diagnosis and to improve clinical care. This overview aims to summarise the utility of key neuroimaging and cerebrospinal fluid (CSF) biomarkers for AD, before focusing on the latest efforts to identify informative blood biomarkers. DESIGN: A literature search was performed using PubMed up to September 2011 for reviews and primary research studies of neuroimaging (magnetic resonance imaging, magnetic resonance spectroscopy, positron emission tomography and amyloid imaging), CSF and blood-based (plasma, serum and platelet) biomarkers in AD and mild cognitive impairment. Citations within individual articles were examined to identify additional studies relevant to this review. RESULTS: Evidence of AD biomarker potential was available for imaging techniques reflecting amyloid burden and neurodegeneration. Several CSF measures are promising, including 42 amino acid ß-amyloid peptide (Aß(42) ); total tau (T-tau) protein, reflecting axonal damage; and phosphorylated tau (P-tau), reflecting neurofibrillary tangle pathology. Studies of plasma Aß have produced inferior diagnostic discrimination. Alternative plasma and platelet measures are described, which represent potential avenues for future research. CONCLUSIONS: Several imaging and CSF markers demonstrate utility in predicting AD progression and determining aetiology. These require standardisation before forming core elements of diagnostic criteria. The enormous potential available for identifying a minimally-invasive, easily-accessible blood measure as an effective AD biomarker currently remains unfulfilled. Copyright © 2012 John Wiley & Sons, Ltd.
Resumo:
Gene flow in macroalgal populations can be strongly influenced by spore or gamete dispersal. This, in turn, is influenced by a convolution of the effects of current flow and specific plant reproductive strategies. Although several studies have demonstrated genetic variability in macroalgal populations over a wide range of spatial scales, the associated current data have generally been poorly resolved spatially and temporally. In this study, we used a combination of population genetic analyses and high-resolution hydrodynamic modelling to investigate potential connectivity between populations of the kelp Laminaria digitata in the Strangford Narrows, a narrow channel characterized by strong currents linking the large semi-enclosed sea lough, Strangford Lough, to the Irish Sea. Levels of genetic structuring based on six microsatellite markers were very low, indicating high levels of gene flow and a pattern of isolation-by-distance, where populations are more likely to exchange migrants with geographically proximal populations, but with occasional long-distance dispersal. This was confirmed by the particle tracking model, which showed that, while the majority of spores settle near the release site, there is potential for dispersal over several kilometres. This combined population genetic and modelling approach suggests that the complex hydrodynamic environment at the entrance to Strangford Lough can facilitate dispersal on a scale exceeding that proposed for L. digitata in particular, and the majority of macroalgae in general. The study demonstrates the potential of integrated physical–biological approaches for the prediction of ecological changes resulting from factors such as anthropogenically induced coastal zone changes.
Resumo:
A two-dimensional vertically integrated hydrodynamic model coupled to a particle tracking model is applied to study the dispersion processes and residence time in Ria de Aveiro lagoon (Portugal). The only dispersion process that is considered in this study is the advection, according to the main characteristics of the local hydrodynamic. The particle tracking model computes the particles position at each time step, using a fourth-order Runge-Kutta integration method. The dispersion of passive particles released along the lagoon and in critical areas are studied in this work. The residence time is also determined for the entire lagoon. The results show that the mixture between particles coming from different channels of the lagoon is negligible in a time scale higher than 2 tidal cycles. The residence time for the lagoon central area is about 2 days, revealing a strong marine influence in this area. At the upper reaches of the channels were found values higher than 2 weeks.
Resumo:
Tese de mestrado integrado em Engenharia Biomédica e Biofísica, apresentada à Universidade de Lisboa, através da Faculdade de Ciências, 2014