340 resultados para porcelain stoneware
Resumo:
Objectives. This study evaluated the effect of thermal- and mechanical-cycling on the shear bond strength of three low-fusing glassy matrix dental ceramics to commercial pure titanium (cpTi) when compared to conventional feldspathic ceramic fused to gold alloy.Methods. Metallic frameworks (diameter: 5 min, thickness: 4 mm) (N = 96, n = 12 per group) were cast in cpTi and gold alloy, airborne particle abraded with 150 mu m aluminum oxide. Low-fusing glassy matrix ceramics and a conventional feldspathic ceramic were fired onto the alloys (thickness: 4mm). Four experimental groups were formed; Gr1 (control group): Vita Omega 900-Au-Pd alloy; Gr2: Ticeram-cpTi; Gr3: Super Porcelain Ti-22-cpTi and G4: Vita Titankeramik-cpTi. While half of the specimens from each ceramic-metal combination were randomly tested without aging (water storage at 37 C for 24h only), the other half were first thermocycled (6000 cycles, between 5 and 55 C, dwell time: 13 s) and then mechanically loaded (20,000 cycles under SON load, immersion in distilled water at 37 C). The ceramic-alloy interfaces were loaded under shear in a universal test machine (cross-head speed: 0.5 mm/min) until failure occur-red. Failure types were noted and the interfaces of the representative fractured specimens from each group were examined with stereo microscope and scanning electron microscope (SEM). in an additional study (N = 16, n = 2 per group), energy dispersive X-ray spectroscopy (EDS) analysis was performed from ceramic-alloy interfaces. Data were analyzed using ANOVA and Tukey's test.Results. Both ceramic-metal combinations (p < 0.001) and aging conditions (p < 0,001) significantly affected the mean bond strength values. Thermal- and mechanical-cycling decreased the bond strength (MPa) results significantly for Gr3 (33.4 +/- 4.2) and Gr4 (32.1 +/- 4.8) when compared to the non-aged groups (42.9 +/- 8.9, 42.4 +/- 5.2, respectively). Gr1 was not affected significantly from aging conditions (61.3 +/- 8.4 for control, 60.7 +/- 13.7 after aging) (p > 0.05). Stereomicroscope images showed exclusively adhesive failure types at the opaque ceramic-cpTi interfacial zone with no presence of ceramic on the substrate surface but with a visible dark titanium oxide layer in Groups 2-4 except Gr1 where remnants of bonder ceramic was visible. EDS analysis from the interfacial zone for cpTi-ceramic groups showed predominantly 34.5-85.1% O(2) followed by 1.1-36.7% Aland 0-36.3% Si except for Super Porcelain Ti-22 where a small quantity of Ba (1.4-8.3%), S (0.7%) and Sn (35.3%) was found. In the Au-Pd alloy-ceramic interface, 56.4-69.9% O(2) followed by 15.6-26.2% Si, 3.9-10.9% K, 2.8-6% Na, 4.4-9.6% Al and 0-0.04% Mg was observed.Significance. After thermal-cycling for 6000 times and mechanical-cycling for 20,000 times, Triceram-cpTi combination presented the least decrease among other ceramic-alloy combinations when compared to the mean bond strength results with Au-Pd alloy-Vita Omega 900 combination. (c) 2008 Academy of Dental Materials. Published by Elsevier Ltd. All rights reserved.
Resumo:
Purpose: To compare the flexural strength of two glass-infiltrated high-strength ceramics and two veneering glass-ceramics.Materials and Methods: Four ceramic materials were tested: two glass-infiltrated high-strength ceramics used as framework in metal-free restorations [In-Ceram Zirconia IZ (Gr1) and In-Ceram Alumina IA (Gr2)], and two glass-ceramics used as veneering material in metal-free restorations [Vita VM7 (Gr3) and Vitadur-alpha (Gr4)]. Bar specimens (25 x 5 x 2 mm(3)) made from core ceramics, alumina, and zirconia/alumina composites were prepared and applied to a silicone mold, which rested on a base from a gypsum die material. The IZ and IA specimens were partially sintered in an In-Ceram furnace according to the firing cycle of each material, and then were infiltrated with a low-viscosity glass to yield bar specimens of high density and strength. The Vita VM7 and Vitadur-alpha specimens were made from veneering materials, by vibration of slurry porcelain powder and condensation into a two-part brass Teflon matrix (25 x 5 x 2 mm(3)). Excess water was removed with absorbent paper. The veneering ceramic specimens were then removed from the matrix and were fired as recommended by the manufacturer. Another ceramic application and sintering were performed to compensate the contraction of the feldspar ceramic. The bar specimens were then tested in a three-point bending test.Results: The core materials (Gr1: 436.1 +/- 54.8; Gr2: 419.4 +/- 83.8) presented significantly higher flexural strength (MPa) than the veneer ceramics (Gr3: 63.5 +/- 9.9; Gr4: 57.8 +/- 12.7).Conclusion: In-Ceram Alumina and Zirconia were similar statistically and more resistant than VM7 and Vitadur-alpha.
Resumo:
Objectives. This study compared the durability of repair bond strength of a resin composite to a reinforced ceramic after three repair systems.Methods. Alumina-reinforced feldspathic ceramic blocks (Vitadur-alpha(R)) (N=30) were randomly divided into three groups according to the repair method: PR-Porcelain Repair Kit (Bisco) [etching with 9.5% hydrofluoric acid + silanization + adhesive]; CJ-CoJet Repair Kit (3M ESPE) [(chairside silica coating with 30 mu m SiO2 + silanization (ESPE(R)-Sil) + adhesive (Visio(TM)-Bond)]; CL-Clearfil Repair Kit [diamond surface roughening, etching with 40% H3PO4 + Clearfil Porcelain Bond Activator + Clearfil SE Bond)]. Resin composite was photo-polymerized on each conditioned ceramic block. Non-trimmed beam specimens were produced for the microtensile bond strength (mu TBS) tests. In order to study the hydrolytic durability of the repair methods, the beam specimens obtained from each block were randomly assigned to two conditions. Half of the specimens were tested either immediately after beam production (Dry) or after long-term water storage (37 degrees C, 150 days) followed by thermocyling (12,000 cycles, 5-55 degrees C) in a universal testing machine (1 mm/min). Failure types were analyzed under an optical microscope and SEM.Results. mu TBS results were significantly affected by the repair method (p=0.0001) and the aging conditions (p=0.0001) (two-way ANOVA, Tukey's test). In dry testing conditions, PR method showed significantly higher (p < 0.001) repair bond strength (19.8 +/- 3.8 MPa) than those of CJ and CL (12.4 +/- 4.7 and 9.9 +/- 2.9, respectively). After long-term water storage and thermocycling, CJ revealed significantly higher results (14.5 +/- 3.1 MPa) than those of PR (12.1 +/- 2.6 MPa) (p < 0.01) and CL (4.2 +/- 2.1 MPa) (p < 0.001). In all groups when tested in dry conditions, cohesive failure in the composite accompanied with adhesive failure at the interface (mixed failures), was frequently observed (76%, 80%, 65% for PR, CJ and CL, respectively). After aging conditions, while the specimens treated with PR and CJ presented primarily mixed failure types (52% and 87%, respectively), CL group presented mainly complete adhesive failures at the interface (70%).Significance. Hydrolytic stability of the repair method based on silica coating and silanization was superior to the other repair strategies for the ceramic tested. (C) 2009 Academy of Dental Materials. Published by Elsevier Ltd. All rights reserved.
Resumo:
This study evaluated the effects of mechanical and thermal cycling on the flexural strength (ISO 9693) of three brands of ceramics fused to commercially pure titanium (cpTi). Metallic frameworks of 25 x 3 x 0.5 mm dimensions (N = 84) were cast in cpTi, followed by 150-mu m aluminum oxide airborne particle abrasion at a designated area of the frameworks (8 x 3 mm). Bonder and opaque ceramic were applied on the frameworks, and then the corresponding ceramic (Triceram, Super Porcelain Ti-22, Vita Titankeramik) was fired onto them (thickness: 1 mm). Half of the specimens from each ceramic-metal combination were randomly tested without aging (only water storage at 37 degrees C for 24 hours), while the other half were mechanically loaded (20,000 cycles under 10 N load, immersion in distilled water at 37 degrees C) and thermocycled (3,000 cycles, between 5-55 degrees C, dwell time of 13 seconds). After the flexural strength test, failure types were noted. Mechanical and thermal cycling decreased the mean flexural strength values significantly (p<0.05) for all the three ceramic-cpTi combinations tested when compared to the control group. In all the three groups, failure type was exclusively adhesive at the opaque ceramic-cpTi interfacial zone with no presence of ceramic on the substrate surface except for a visible oxide layer.
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
The interface formed between the metal and the porcelain of a LASER welded Ni-Cr-Mo alloy was studied. The characterization was carried out through optical microscopy, scanning electron microscopy, X-ray dispersive spectroscopy-EDS and mechanical testing by three-point flexion test-TPE in the region LASER welded with and without the porcelain. The porcelain adhesion with the alloy alone is possible after the oxidation of the metallic surface and subsequent application of an adhesive called opaco. The applied porcelain, on the base metal and fusion zone presented some distinct behaviors. After the TPF test the base metal presented fractures while that in the fusion zone was completely gone. One noticed that the region submitted to the LASER welding showed less porcelain adhesion than the region of the base metal due to the microestructural refinement of the fusion zone. These results can be evidenced by the EDS of the studied regions. The TPF had demonstrated that the Ni-Cr-Mo alloy submitted to the LASER welding, undergone significant alterations in its mechanical properties after the application of the porcelain.
Resumo:
Com o objetivo de verificar possível efeito alelopático de 18 espécies de plantas daninhas sobre o crescimento inicial de Eucalyptus grandis, realizaram-se dois experimentos em casa de vegetação. No primeiro experimento, dentre 18 espécies de plantas daninhas testadas, Brachiaria decumbens (BRADC) demonstrou acentuada capacidade de reduzir o crescimento de Eucalyptus grandis, quando incorporada ao solo. No segundo experimento avaliou-se o efeito da adição no substrato de concentrações de matéria seca de BRADC sobre o crescimento inicial de mudas de E. grandis. A matéria seca triturada de BRADC foi incorporada ao solo nas concentrações de 0% (testemunha), 0,5%, 1,0%, 2,0% e 3,0% (p/p). Instalou-se também uma réplica do experimento, com adição de idênticas quantidades totais de carbono entre os tratamentos. O ajuste da quantidade de carbono foi feito através da adição de Sphagnum. Extraiu-se a solução do solo por meio de cápsulas de porcelana introduzidas nos vasos quando do transplante das mudas de eucalipto. As soluções foram coletadas ao final do experimento (39 dias após o transplante das mudas), sendo utilizadas para a determinação de pH, condutividade elétrica, potencial osmótico e para análise de teores de nutrientes. As mínimas proporções de BRADC, com efeito inibitório, foram de 0,5 e 1,0%, com e sem Sphagnum, respectivamente. Nestas duas condições, a área foliar média do eucalipto foi reduzida em 24 e 23%, respectivamente. As análises de solução do solo dos tratamentos permitiram concluir que os teores de nutrientes e as características químicas destes foram pouco alterados pelos tratamentos, sendo pouco provável que a redução do crescimento do E. grandis se deva às restrições nas quantidades de nutrientes disponíveis.
Resumo:
Avaliou-se a resistência de união metal/porcelana utilizando-se uma liga de Ni-Cr, submetida a diferentes tempos de oxidação prévia com o sistema cerâmico Vita-VMK, através do teste preconizado por CHIODI NETTO3. A análise dos resultados permitiu as seguintes conclusões: a ausência da oxidação prévia possibilitou os melhores resultados, sendo que a diferença foi estatisticamente significante; diferentes tempos de oxidação prévia provocaram redução acentuada nos valores obtidos e foram semelhantes entre si; o grupo submetido ao processo de jateamento após a oxidação prévia por cinco minutos mostrou resultados similares aos grupos que também passaram pelo processo de oxidação e não sofreram jateamento posterior.
Resumo:
OBJETIVO: o objetivo deste trabalho foi avaliar a influência do tipo de tratamento superficial da porcelana na resistência adesiva da colagem de braquetes ortodônticos e o modo de fratura após a descolagem. METODOLOGIA:foram confeccionados 80 corpos-de-prova de porcelana, divididos em quatro grupos (n = 18) de acordo com os diferentes tratamentos de superfície: (G1) ponta diamantada; (G2) ponta diamantada e silano; (G3) ácido hidrofluorídrico e (G4) ácido hidrofluorídrico e silano. Após o preparo das superfícies, braquetes Edgewise (Morelli) foram colados com resina (Transbond XT, 3M) e submetidos ao teste de cisalhamento. Os resultados foram avaliados estatisticamente pelo teste de Kruskal-Wallis. RESULTADO: o grupo G1 apresentou uma média de resistência de 3,35, o G2 3,97, o G3 2,56 e o G4 3,10. CONCLUSÃO: constatou-se que não houve diferença estatisticamente significativa na resistência adesiva do braquete entre os tipos de tratamentos estudados (p > 0,05) e os modos de fratura ocorreram, em sua grande maioria, na interface braquete/resina. Este estudo indica que todos os tipos de tratamentos apresentados são eficientes para a colagem.
Resumo:
Statement of problem. The success of metal-ceramic restorations is influenced by the compatibility between base metal alloys and porcelains. Although porcelain manufacturers recommend their own metal systems as the most compatible for fabricating metal-ceramic prostheses, a number of alloys have been used.Purpose. This study evaluated the shear bond strength between a porcelain system and 4 alternative alloys.Material and methods. Two Ni-Cr alloys: 4 ALL and Wiron 99, and 2 Co-Cr alloys: IPS d.SIGN 20 and Argeloy NP were selected for this study. The porcelain (IPS d.Sign porcelain system) portion of the cylindrical inetal-ceramic specimens was 4 mm thick and 4 mm high; the metal portion was machined to 4 x 4 mm, with a base that was 5 nun thick and 1 mm high. Forty-four specimens were prepared (n=11). Ten specimens from each group were subjected to a shear load oil a universal testing machine using a 1 min/min crosshead speed. One specimen from each group was observed with a scanning electron microscope. Stress at failure (MPa) was determined. The data were analyzed with a 1-way analysis of variance (alpha=.05).Results. The groups, all including IPS d.Sign porcelain, presented the following mean bond strengths (+/-SD) in MPa: 4 ALL, 54.0 +/- 20.0; Wiron, 63.0 +/- 13.5; IPS d.SIGN 20, 71.7 +/- 19.2; Argeloy NP, 55.2 +/- 13.5. No significant differences were found among the shear bond strength values for the metal-ceramic specimens tested.Conclusion. None of the base metal alloys studied demonstrated superior bond strength to the porcelain tested.
Resumo:
Statement of problem. Titanium has physical and mechanical properties, which have led to its increased use in dental prostheses despite casting difficulties due to high melting point and formation of oxide layers which affect the metal-ceramic bond strength.Purpose. This in vitro study evaluated the shear bond strength of the interface of 2 dental porcelains and pure titanium injected into a mold at 3 different temperatures.Material and methods. Using commercially pure (cp) titanium bars (Titanium, Grade I) melted at 1668degreesC and cast at mold temperatures of 430degreesC, 700degreesC or 900degreesC, 60 specimens were machined to 4 x 4 mm, with a base of 5 x 1 mm. The 4-mm surfaces were airborne-particle abraded with 100 mum aluminum oxide before applying and firing the bonding agent and evaluating the 2 porcelains (Triceram/Triline ti and Vita Titankeramik). Ten specimens were prepared for each temperature and porcelain combination Shear bond testing was performed in a universal testing machine, with a 500-kg load cell and crosshead speed of 0.5 mm/min. The specimens were loaded until failure. The interfaces of representative fractured specimens of each temperature were examined with a scanning electron microscope (SEM) and energy dispersive spectrometer (EDS). Data for shear bond strength (MPa) were statistically analyzed by 2-way ANOVA and the Tukey test (alpha = .05).Results. The results showed significant differences for the metal/porcelain interaction effect (P = .0464). There were no significant differences for the 2 porcelains (P = .4250). The Tukey test showed a significant difference between the pair cp Ti 430degreesC Triceram and cp Ti 900degreesC Triceram, with respective mean values and SDs of 59.74 +/- 11.62 and 34.03 +/- 10.35 MPa.Conclusion. Triceram porcelain showed a bond strength decrease with an increase in the mold temperature for casting titanium. The highest bond strength for Vita porcelain and the best metal-ceramic interface observed with the SEM were found with the mold temperature of 700degreesC.
Resumo:
The aim of this study was to evaluate the effect of ageing in distilled water on the hardness and compressive strength of a direct composite resin Z100, a feldspatic porcelain (Noritake) and three indirect composites (Artglass, Solidex and Targis). For the Vickers hardness tests, five disk-shaped specimens (2 x 4 mm) of each material were prepared according to the manufacturers' instructions. The hardness tests were conducted using a Vickers diamond indentor. Compressive strength measurements were recorded on cylindrical specimens with a diameter of 6 mm and a length of 12 mm. The compression tests were carried out with a constant cross-head speed of 0.5 mm min(-1) on a mechanical test machine. For each material, 10 specimens were tested after 7 days of dry storage at 37 +/- 1 degreesC and 10 specimens were tested after water storage at 37 +/- 1 degreesC for 180 days. Noritake porcelain specimens showed higher hardness values than the composites. Among the composite materials, Z100 promoted the highest VHN values, regardless of the ageing periods. The results showed that Solidex and Z100 had the highest compressive strength values. Ageing in water reduced the hardness for all composites, but had no long-term effect on the compressive strength.
Resumo:
Purpose: The objective of this study was to test the following hypothesis: the silica coating on ceramic surface increases the bond strength of resin cement to a ceramic. Materials and Methods: In-Ceram Alumina blocks were made and the ceramic surface was treated: G1 - sandblasting with 110-μm aluminum oxide particles; G2 - Rocatec System: tribochemicai silica coating (Rocatec-Pre powder + Rocatec-Plus powder + Rocatec-Sil); G3 - CoJet System: silica coating (CoJet-Sand) + ESPE-Sil. The ceramic blocks were cemented to composite blocks with Panavia F resin cement (under a load of 750 g/1 min). The cemented blocks were stored in distilled water at 37°C for 7 days and sectioned along the x and y axes with a diamond disk. Samples with an adhesive area of ca 0.8 mm 2 (n = 45) were obtained. The samples were attached to an adapted device for the microtensile test, which was performed in a universal testing machine (EMIC) at a crosshead speed of 1 mm/min. Results: The obtained results were submitted to ANOVA and Tukey's test. Mean values of tensile strength (MPa) and standard deviation values were: (G1) 16.8 ± 3.2; (G2) 30.6 ± 4.5; (G3) 33.0 ± 5.0. G2 and 63 presented greater tensile strength than G1. There was no significant difference between G2 and G3. All the failures took place at the ceramic/resin cement interface. Conclusion: The silica coating (Rocatec or CoJet systems) of the ceramic surface increased the bond strength between the Panavia F resin cement and alumina-based ceramic.
Resumo:
Purpose: This study tested the hypothesis that the tribochemical silica coating on ceramic surfaces increases the bond strength of resin cement to a glass-infiltrated zirconium-based ceramic. Materials and Methods: Fifteen blocks of In-Ceram Zirconia from CEREC InLab (5 per group) and 15 composite blocks (Z-250) 5 mm x 5 mm x 4 mm were made. The ceramic surfaces were polished, and the blocks were divided into three groups: (1) airborne abrasion with 110-μm aluminum oxide particles; (2) Rocatec system, tribochemical silica coating; and (3) CoJet system, tribochemical silica coating. The ceramic blocks were cemented to the composite blocks using Panavia F according to the manufacturer's specifications. All samples were stored in 37°C distilled water for 7 days and later sectioned in two axes using a diamond disk under cooling to obtain specimens with a cross-sectional area of approximately 1 mm2 (n = 45). Each specimen was then attached with cyanoacrylate glue to an adapted device for the microtensile test, which was carried out on a universal testing machine. Results: The results were subjected to ANOVA and Tukey's test. Group 2 (23.0 ± 6.7 MPa) and group 3 (26.8 ± 7.4 MPa) showed greater bond strength than group 1 (15.1 ± 5.3 MPa). There was no significant difference between groups 2 and 3. All failures were in the adhesive zone. Conclusion: The hypothesis was confirmed - the tribochemical systems increased the bond strength between Panavia F and In-Ceram Zirconia.