832 resultados para poly (ether ether ketone)
Resumo:
In recent years there has been growing interest in the use of dimethyl ether (DME) as an alternative fuel. In this study, the adsorption of DME on molecular sieves 4Å (Mol4A) and 5Å (Mol5A) has been experimentally investigated using the volumetric adsorption method. Data on the adsorption isotherms, heats of adsorption, and adsorption kinetic have been obtained and used to draw conclusions and compare the performance of the two adsorbents. Within the conditions considered, the adsorption capacity of Mol5A was found to be around eight times higher than the capacity of Mol4A. Low temperature adsorption and thermal pre-treatment of the adsorbents in vacuum were observed to be favourable for increased adsorption capacity. The adsorption isotherms for both adsorbent were fitted to the Freundlich model and the corresponding model parameters are proposed. The adsorption kinetic analysis suggest that the DME adsorption on Mol5A is controlled by intracrystalline diffusion resistance, while on Mol4A it is mainly controlled by surface layering resistance with the diffusion only taking place at the start of adsorption and for a very limited short time. The heats of adsorption were calculated by a calorimetric method based on direct temperature measurements inside the adsorption cell. Isosteric heats, calculated by the thermodynamic approach (Clasius-Clapeyron equation), have consistently shown lower values. The maximum heat of adsorption was found to be 25.9kJmol-1 and 20.1kJmol-1 on Mol4A and Mol5A, respectively; thus indicating a physisorption type of interactions. © 2014 Elsevier B.V.
Resumo:
The main goal of this thesis was to prepare medium-chain-length poly-3-hydroxyalkanoate (mcl-PHA) nanoparticle suspensions at high solids content (≥ 10 % w/v). A two-stage emulsification-solvent evaporation process was employed to produce poly-3-hydroxydecanoate (PHD) suspensions. The formulation and processing conditions including ultrasonication time and amplitude, selection of solvent, and selection of surfactants and their concentrations were investigated to make concentrated suspensions (10 and 30 % (w/v)) of PHD with particles less than 300 nm. Among the ionic surfactants tested to stabilize the suspension, the anionic, sodium dodecyl sulphate (SDS), and the cationic, dodecyltrimethylammonium bromide (DTAB) surfactants produced the smallest particle sizes (~100 nm). However, more stabilized nanoparticles were obtained when the ionic surfactant, SDS, was combined with any of the non-ionic surfactants tested, with polyoxyethylene octyl phenyl ether (Triton X-100) or polyoxyethylene (20) sorbitan monooleate (Tween 80) resulting in a slight increase in zeta potential over 30 days while the zeta potential with other non-ionic surfactants decreased. Mcl-PHA containing 11 and 18 % of carboxyl groups was synthesized via free radical addition reaction of 11-mercaptoundecanoic acid to the pendant double bonds of unsaturated poly-3-hydroxynonanoate (PHNU). Colloidal suspensions prepared by ultrasonication needed a surfactant to maintain stability, even at 0.4 % solids of mcl-PHA containing 11 % carboxylation (PHNC-1) unlike the stable suspensions prepared without surfactants by the titration method. Similar particle sizes (155.6 ± 8.4 to 163.4 ± 11.3 nm) and polydispersity indices (0.42 ± 0.03 to 0.49 ± 0.04) were obtained when several non-ionic surfactants were tested to minimize particle agglomeration, with the smallest particles obtained with Triton X-100. When Triton X-100 was combined with a variety of ionic surfactants, smaller nanoparticles (97.1 ± 1.1 to 121.7 ± 5.7 nm) with a narrower particle size distribution (0.21 ± 0.001 to 0.25 ± 0.003) were produced. The SDS and Triton X-100 combination was chosen to evaluate other mcl-PHAs at 10 % (w/v) solids content. Slightly smaller nanoparticles were formed with carboxylated mcl-PHAs compared to mcl-PHAs having aliphatic pendant side chains. Mcl-PHA consisting of 18 % carboxylation (PHNC-2) formed a much smaller nanoparticles and higher zeta potential.
Resumo:
The human ether-a-go-go-related gene (hERG) encodes the voltage-gated K+ channel, hERG (Kv11.1). This channel passes the rapidly-activating delayed rectifier K+ current (IKr), which is important for cardiac repolarization. A reduction in IKr due to loss-of-function mutations or drug interactions causes long QT syndrome (LQTS), which can lead to cardiac arrhythmias and sudden cardiac death. The density of hERG channels in the plasma membrane is a key determinant of normal physiological function, and is balanced by trafficking to and from the cell surface. Many LQTS-associated hERG mutations result in a trafficking deficiency of otherwise functional channels. Thus, elucidating mechanisms of hERG regulation at the plasma membrane is useful for the prevention and treatment of LQTS. We previously demonstrated that M3 muscarinic receptor activation increases mature hERG expression through a Gq protein-dependent protein kinase C (PKC) pathway. In addition to conventional Gq protein-coupling, M3 receptors recruit β-arrestins upon agonist binding. Traditionally known for their role in receptor desensitization and internalization, β-arrestins also act as adaptor proteins to facilitate G protein-independent signaling. In the present work, I investigated the exclusive effect of β-arrestin signaling on hERG expression by utilizing an arrestin-biased M3 designer receptor (M3D-arr) exclusively activated by clozapine-N-oxide (CNO). By expressing M3D-arr in hERG-HEK cells and treating with CNO under various conditions, I found that M3D-arr activation increased mature hERG expression and current. Within this paradigm, M3D-arr recruited β-arrestin to the plasma membrane, and promoted the PI3K-dependent activation of Akt. I further found that the activated Akt acted through phosphatidylinositol 3-phosphate 5-kinase (PIKfyve) and Rab11 to facilitate endosomal recycling of hERG channels to the plasma membrane.
Resumo:
Dechlorane Plus (DP) is a proposed alternative to the legacy flame retardant decabromodiphenyl ether (BDE-209), a major component of Deca-BDE formulations. In contrast to BDE-209, toxicity data for DP are scarce and often focused on mice. Validated dietary in vivo exposure of the marine bivalve (Mytilus galloprovincialis) to both flame retardants did not induce effects at the physiological level (algal clearance rate), but induced DNA damage, as determined by the comet assay, at all concentrations tested. Micronuclei formation was induced by both DP and BDE-209 at the highest exposure concentrations (100 and 200 mu g/L, respectively, at 18% above controls). DP caused effects similar to those by BDE-209 but at lower exposure concentrations (5.6, 56, and 100 mu g/L for DP and 56, 100, and 200 mu g/L for BDE-209). Moreover, bioaccumulation of DP was shown to be concentration dependent, in contrast to BDE-209. The results described suggest that DP poses a greater genotoxic potential than BDE-209
Resumo:
Dechlorane Plus (DP) is a proposed alternative to the legacy flame retardant decabromodiphenyl ether (BDE-209), a major component of Deca-BDE formulations. In contrast to BDE-209, toxicity data for DP are scarce and often focused on mice. Validated dietary in vivo exposure of the marine bivalve (Mytilus galloprovincialis) to both flame retardants did not induce effects at the physiological level (algal clearance rate), but induced DNA damage, as determined by the comet assay, at all concentrations tested. Micronuclei formation was induced by both DP and BDE-209 at the highest exposure concentrations (100 and 200 mu g/L, respectively, at 18% above controls). DP caused effects similar to those by BDE-209 but at lower exposure concentrations (5.6, 56, and 100 mu g/L for DP and 56, 100, and 200 mu g/L for BDE-209). Moreover, bioaccumulation of DP was shown to be concentration dependent, in contrast to BDE-209. The results described suggest that DP poses a greater genotoxic potential than BDE-209
Resumo:
A novel cyclic sulfonium cation-based ionic liquid (IL) with an ether-group appendage and the bis{(trifluoromethyl)sulfonyl}imide anion was synthesised and developed for electrochemical double layer capacitor (EDLC) testing. The synthesis and chemical-physical characterisation of the ether-group containing IL is reported in parallel with a similarly sized alkyl-functionalised sulfonium IL. Results of the chemical-physical measurements demonstrate how important transport properties, i.e. viscosity and conductivity, can be promoted through the introduction of the ether-functionality without impeding thermal, chemical or electrochemical stability of the IL. Although the apparent transport properties are improved relative to the alkyl-functionalised analogue, the ether-functionalised sulfonium cation-based IL exhibits moderately high viscosity, and poorer conductivity, when compared to traditional EDLC electrolytes based on organic solvents (propylene carbonate and acetonitrile). Electrochemical testing of the ether-functionalised sulfonium IL was conducted using activated carbon composite electrodes to inspect the performance of the IL as a solvent-free electrolyte for EDLC application. Good cycling stability was achieved over the studied range and the performance was comparable to other solvent free,
IL-based EDLC systems. Nevertheless, limitations of the attainable performance are primarily the result of sluggish transport properties and a restricted operative voltage of the IL, thus highlighting key aspects of this field which require further attention.
Resumo:
During this work, a novel series of hydrophobic room temperature ionic liquids (ILs) based on five ether functionalized sulfonium cations bearing the bis(trifluoromethyl)sulfonylimide, [NTf2]- anion were synthesized and characterized. Their physicochemical properties, such as density, viscosity and ionic conductivity, electrochemical window along with thermal properties including phase transition behavior and decomposition temperature, have been measured. All of these ILs showed large liquid range temperature, low viscosity and good conductivity. Additionally, by combining DFT calculations along with electrochemical characterization it appears that these novel ILs show good electrochemical stability windows, suitable for the potential application as electrolyte materials in electrochemical energy storage devices.
Resumo:
This study presents a computational parametric analysis of DME steam reforming in a large scale Circulating Fluidized Bed (CFB) reactor. The Computational Fluid Dynamic (CFD) model used, which is based on Eulerian-Eulerian dispersed flow, has been developed and validated in Part I of this study [1]. The effect of the reactor inlet configuration, gas residence time, inlet temperature and steam to DME ratio on the overall reactor performance and products have all been investigated. The results have shown that the use of double sided solid feeding system remarkable improvement in the flow uniformity, but with limited effect on the reactions and products. The temperature has been found to play a dominant role in increasing the DME conversion and the hydrogen yield. According to the parametric analysis, it is recommended to run the CFB reactor at around 300 °C inlet temperature, 5.5 steam to DME molar ratio, 4 s gas residence time and 37,104 ml gcat -1 h-1 space velocity. At these conditions, the DME conversion and hydrogen molar concentration in the product gas were both found to be around 80%.
Resumo:
Thesis (Master, Chemical Engineering) -- Queen's University, 2016-08-16 04:58:55.749
Resumo:
In this work, the synthesis of a new bifunctionalized cyclooctyne for a possible layer by layer surface functionalization is presented. The main objective is to find a more stable molecule than the literature known methyl enol ether substituted cyclooctyne. Accordingly, the two target functionalities are an internal alkyne group and a vinyl methyl sulfide group. The synthesis was achieved in 9 steps and consists first of all in the preparation of an aldehyde starting from 1,5-cyclooctadiene with a cyclopropanation reaction followed by a reduction and the SWERN oxidation to an aldehyde. The new functionality was introduced by exploiting the WITTIG reaction. For the alkyne group a bromination followed by a double elimination gave good results. The reactivity of the new molecule was tested using a sequential application of SPAAC and iEDDA reactions, comparing it with the cyclooctyne functionalized with a methyl enol ether. Concerning the comparison of both compounds the sulfur ether is significantly slower and therefore more stable. It will be tested in the future for surface functionalization from the KOERT group.
Resumo:
High solids content film-forming poly[styrene-co-(n-butyl acrylate)] [poly(Sty-co-BuA)] latexes armored with Laponite clay platelets have been synthesized by soap-free emulsion copolymerization of styrene and n-butyl acrylate. The polymerizations were performed in batch in the presence of Laponite and a methyl ether acrylateterminated poly(ethylene glycol) macromonomer in order to promote polymer/clay association. The overall polymerization kinetics showed a pronounced effect of clay on nucleation and stabilization of the latex particles. Cryo-transmission electron microscopy observation confirmed the armored morphology and indicated that the majority of Laponite platelets were located at the particle surface. The resulting nanostructured films displayed enhanced mechanical properties.
Resumo:
Methods of promoting the radiation-induced cross linking of poly(tetrafluoro-ethylene-co-perfluoromethyl vinyl ether) (TFE/PMVE) have been investigated. Greater control of the crosslinking and chain-scission reactions was achieved by varying the radiolysis temperature. This was attributed to temperature affecting the mobilities of reactive species such as polymeric free radicals. These reactive species are precursors to radiation-induced cross links and chain-ends. Analysis of the sol/gel behaviour, tensile properties and FTIR indicated that the optimum temperature for the radiation crosslinking of TFE/PMVE, at a dose of 150 kGy, was 263 K. This temperature was 10 K below the glass transition temperature. Incorporation of 1 wt% triallyl isocyanurate (TAIC) greatly amplified the radiation crosslinking of TFE/PMVE, The dose for gelation was decreased by 70%, and the additive imparted superior mechanical properties compared to the neat irradiated TFE/PMVE. Electron spin resonance (ESR) measurements showed higher radical yields at 77 K with the 1 wt% TAIC, indicating that the crosslinking promoter was acting as a radical trap. (C) 1999 Society of Chemical Industry.
Resumo:
Changes in molecular motion in blends of PEO-PVPh have been studied using measurements of C-13 T-1 rho relaxation times. C-13 T-1 rho relaxation has been confirmed as arising from spin-lattice interactions by observation of the variation in T-1 rho with rf field strength and temperature. In the pure homopolymers a minimum in T-1 rho is observed at ca. 50 K above the glass transition temperatures detected by DSC. After blending, the temperature of the minimum in T-1 rho for PEO increased, while that for PVPh decreased, however, the minima, which correspond to the temperatures where the average correlation times for reorientation are close to 3.1 mu s, are separated by 45 K (in a 45% PEO-PVPh blend). These phenomena are explained in terms of the local nature of T-1 rho measurements. The motions of the individual homopolymer chains are only partially coupled in the blend. A short T-1 rho has been observed for protonated aromatic carbons, and assigned to phenyl rings undergoing large-angle oscillatory motion, The effects of blending, and temperature, on the proportion of rings undergoing oscillatory motion are analyzed.
Resumo:
The radiation chemistry of two TFE/PMVE copolymers with TFE mole fractions of 0.66 and 0.81 has been studied under vacuum using Co-60 gamma -radiation over absorbed dose ranges up to 4.2 MGy. The radiolysis temperature was 313 K for both TFE/PMVE copolymers. New structure formation in the copolymers was identified by solid-state F-19 NMR and the G-values for new chain ends of 2.1 and 0.5 and for branching sites of 0.9 and 0.2 have been obtained for the TFE/PMVE with TFE mole fractions of 0.66 and 0.81, respectively. The relative yields of-O-CF3 and -CF2-CF3 chain ends were found to be proportional to the copolymer composition, but the yields of the -CF2-CF3 chain ends and -CF- branch points mere not linearly related ia the composition. rather they wets correlated with the radical yields measured at 77 K. (C) 2001 Elsevier Science Ltd. All rights reserved.
Resumo:
Poly(tetrafluoroethylene-co-perfluoropropyI vinyl ether), PFA, was grafted with styrene from the vapor phase using a simultaneous radiation grafting method. The graft yields were measured as a function of the dose and dose rate and were found to be initially linearly dependent on the dose and independent of the dose rate up to dose rates of similar to3 kGy/h. However, at a dose rate of 6.2 kGy/h, the slope of the yield-grafting time plot decreased. Raman depth profiles of the grafts showed that the polystyrene concentrations were greatest near the surface of the grafted samples and decreased with depth. The maximum penetration depth of the graft depended on the radiation dose for a fixed dose rate. Fmoc-Rink loading tests showed that the grafts displayed superior loading compared to grafts prepared from bulk styrene or from styrene solutions other than methanol.