892 resultados para poly(methyl methacrylate)


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Poly(methyl)methacrylate was made photoconducting by molecular doping and the photoconductivity was investigated using modulated photocurrent technique . Low-temperature current-voltage measurements showed that the transport mechanism was thermally activated hopping. An experimental investigation of the photoconductivity action spectrum along with theoretical calculation enabled an estimation of the diffusion coefficient of the material. The presence of states with a distribution of lifetimes could be understood from the frequency response of the photocurrent . The photocurrent was due to the field-assisted dissociation of these states

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Poly(methyl)methacrylate was made photoconducting by molecular doping and the photoconductivity was investigated using modulated photocurrent technique . Low-temperature current-voltage measurements showed that the transport mechanism was thermally activated hopping. An experimental investigation of the photoconductivity action spectrum along with theoretical calculation enabled an estimation of the diffusion coefficient of the material. The presence of states with a distribution of lifetimes could be understood from the frequency response of the photocurrent . The photocurrent was due to the field-assisted dissociation of these states.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The phase separation behaviour in aqueous mixtures of poly(methyl vinyl ether) and hydroxypropylcellulose has been studied by cloud points method and viscometric measurements. The miscibility of these blends in solid state has been assessed by infrared spectroscopy; methanol vapours sorption experiments and scanning electron microscopy. The values of Gibbs energy of mixing of the polymers and their blends with methanol as well as between each other were calculated. It was found that in solid state the polymers can interact with methanol very well but the polymer-polymer interactions are unfavourable. Although in aqueous solutions the polymers exhibit some intermolecular interactions their solid blends are not completely miscible. (C) 2005 Elsevier Ltd. All rights reserved.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Bond failures at the acrylic teeth and denture base resin interface are still a common clinical problem in prosthodontics. The effect of methyl methacrylate (MMA) monomer on the bond strength of three types of denture base resins (Acron MC, Lucitone 550 and QC-20) to two types of acrylic teeth (Biotone and Trilux) was evaluated. Twenty specimens were produced for each denture base resin/acrylic tooth combination and were randomly divided into control (acrylic teeth received no surface treatment) and experimental groups (MMA was applied to the surface of the acrylic teeth for 180 s) and were submitted to shear tests (1 mm/mm). Data (MPa) were analyzed using three-way ANOVA/Student's test (alpha = 0.05). MMA increased the bond strength of Lucitone denture base resins and decreased the bond strength of QC-20. No difference was detected for the bond strength of Acron MC base resin after treatment with MMA. (C) 2008 Elsevier Ltd. All rights reserved.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The binding of the cations thallium(I), calcium(II) and terbium(III) to methyl methacrylate-methacrylic acid copolymers with different fractions of acid groups (x) has been studied in aqueous solution at, various pH values using the fluorescence of covalently bonded 9-vinyl anthracene as a probe. In all cases, the extent of binding increases as a function of the charge of the polymer with either increasing fraction of carboxylic acids or of pH. However, differences are observed in the behavior of the three cations, With Tl(I), quenching of the anthracene group fluorescence is observed. indicating that the thallium(I) approaches the probe and suggesting that the alkylanthracene is probably in a relatively polar region. Binding constants have been determined from anthracene quenching data and from studies with the fluorescent-probe sodium pyrenetetrasulfonate, Good agreement is obtained between the two methods, and values for the binding constants increase from 250 to 950 M-1 as x increases from 0.39 to 1. It is suggested that the cation is held in the polyelectrolyte domain, partly by Debye-Huckel effects and partly by more specific interactions. Stronger binding is found with calcium(II) and terbium(III), and in this case increases in fluorescence intensity are observed on complexation due to the anthracene group being in a more hydrophobic region, probably as a result of conformational changes in the polymer chain. In the former case the stoichiometry of the interaction was determined from the fluorescence data to involve two carboxylate groups bound per calcium. Association constants were found using murexide as an indicator of free calcium to vary from 8400 to 37 000 M-1 as x increases from 0.39 to 1. It is suggested that in this case specific calcium(II)-carboxylate interactions contribute to the binding. With terbium(III), a greater increase in the probe fluorescence intensity was observed than with calcium, and it is suggested that the interaction with the polymer is even stronger, leading to a more pronounced conformational change in the polymer. It is proposed that the terbium(III) interacts with sis carboxylic groups on the polymer chain, with three being coordinated and three attracted by electrostatic interactions.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The morphologies of nylon 6/acrylonitrile-butadiene-styrene blends compatibilized with a methyl methacrylate/maleic anhydride copolymer, with 3-20 wt % maleic anhydride, were examined by transmission electron microscopy. Some staining techniques were employed for identifying the various phases. The binary blends were immiscible and exhibited poor mechanical properties that stemmed from the unfavorable interactions among their molecular segments. This produced an unstable and coarse phase morphology and weak interfaces among the phases in the solid state. The presence of the copolymer in the blends clearly led to a more efficient dispersion of the acrylonitrile-butadiene-styrene phase and consequently optimized Izod impact properties. © 2003 Wiley Periodicals, Inc.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Nylon6 is an attractive polymer for engineering applications because it has reactive functionality through amine and carboxyl end groups that are capable of reacting. For this reason, it has been used a lot in polymeric blends. Blends of nylon6/ABS (acrylonitrile-butadiene-styrene) were produced using glycidyl methacrylate-methyl methacrylate (GMA-MMA) copolymers as compatibilizer. The binary blends were immiscible and exhibited poor mechanical properties that stemmed from the unfavorable interactions among their molecular segments. This produced an unstable coarse phase morphology and weak interfaces between the phases in the solid state. The presence of the copolymer in the blends clearly led to a more efficient dispersion of the ABS phase and consequently optimized Izod impact properties. However, the compatibilized blend showed poor toughness at room temperature and failed in a brittle manner at subambient temperatures. © 2005 Springer Science + Business Media, Inc.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Purpose: The objectives of this study were to investigate the flexural strength (FS) and chemical interaction between 2-tert-butylaminoethyl methacrylate (TBAEMA) and a denture base acrylic resin. Materials and Methods: Specimens were divided into five groups according to the concentration of TBAEMA incorporated in acrylic resin Onda-Cryl (0%, 1%, 2%, 3%, 4%) and were submitted to Fourier transform infrared spectroscopy (FTIR), electron spectroscopy for chemical analysis (XPS-ESCA), and differential scanning calorimetry (DSC) analyses. FS of the specimens was tested, and results were analyzed by ANOVA/Tukey's test (α < 0.05). Results: Different nitrogen ratios were observed on specimens' surfaces: 0.36%, 0.54%, 0.35%, and 0.20% for groups 1%, 2%, 3%, and 4%, respectively. FTIR indicated copolymerization of acrylic resin and TBAEMA, and DSC results demonstrated a decrease in glass transition temperature (Tg). Significant differences were found for FS (p < 0.05). The mean values were 91.1 ± 5.5,A 77.0 ± 13.1,B 67.2 ± 12.5,B 64.4 ± 13.0,B and 67.2 ± 5.9B MPa for groups 0%, 1%, 2%, 3% and 4%, respectively (same superscript letters indicate no significant difference). Conclusions: The incorporation of TBAEMA in acrylic resin resulted in copolymerization and the presence of amine groups on specimens' surfaces, and in decreases of Tg and FS. © 2012 by the American College of Prosthodontists.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The colloidal stability of poly(ethylene glycol)-decorated poly(methyl methacrylate), PMMA/Tween-20, particles was investigated by means of phase separation measurements, in the presence of sodium fluoride (NaF), sodium chloride, sodium bromide, sodium nitrate, or sodium thiocyanate (NaSCN) at 1.0 mol L-1. Following Hofmeister's series, the dispersions of PMMA/Tween-20 destabilized faster in the presence of NaF than with NaSCN. After the phase separation, the systems were homogenized and except for the dispersions in NaF, re-dispersed particles took longer to destabilize, indicating that anions adsorbed on the particles, creating a new surface. Except for F- ions, the adsorption of anions on the polar outmost shell was evidenced by means of tensiometry and small-angle X-ray scattering measurements. Fluoride ions induced the dehydration of the polar shell, without affecting the polar shell electron density, and the formation of very large aggregates. A model was proposed to explain the colloidal behavior in the presence of Hofmeister ions.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This thesis work is part of a larger synthesis project about alkyd resins from natural sources, copolymerized with methyl acrylate and n-butyl acrylates, which wil be used for coatings purpose. The aim is to control the copolymerization of methyl acrylate and n-butyl acrylate in RAFT miniemulsion. The research was divided into three parts. First the homopolymerization of methyl methacrylate and n-butyl acrylate was studied by varying different parameters such as the amount of surfactant, the amount of initiator, pH, and especially the RAFT agent. Then two macro RAFT agents were synthesized, as suggested by the existing literature. Finally, the two monomers were copolymerized using both the RAFT used for the homopolymerization and those synthesized in the second stage. To verify the obtained control over the polymerization, the synthesized polymers were analyzed by gel permeation chromatography, GPC, thus finding their molecular weight and its polydispersity.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Mode of access: Internet.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The RAFT-CLD-T methodology is demonstrated to be not only applicable to 1-substituted monomers such as styrene and acrylates, but also to 1,1-disubstituted monomers such as MMA. The chain length of the terminating macromolecules is controlled by CPDB in MMA bulk free radical polymerization at 80 degrees C. The evolution of the chain length dependent termination rate coefficient, k(t)(i,i), was constructed in a step-wise fashion, since the MMA/CPDB system displays hybrid behavior (between conventional and living free radical polymerization) resulting in initial high molecular weight polymers formed at low RAFT agent concentrations. The obtained CLD of k(t) in MMA polymerizations is compatible with the composite model for chain length dependent termination. For the initial chain-length regime, up to a degree of polymerization of 100, k(t) decreases with alpha (in the expression k(t)(i,i) = k(t)(0) . i(-alpha)) being close to 0.65 at 80 degrees C. At chain lengths exceeding 100, the decrease is less pronounced (affording an alpha of 0.15 at 80 degrees C). However, the data are best represented by a continuously decreasing nonlinear functionality implying a chain length dependent alpha.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

A study has been made of the anionic polymerization of methyl methacrylate using butyllithium and polystyryl lithium as initiators and using aluminium triisobutyl as a cocatalyst. The aspects of the polymerization that were examined were the effect of changing the order of addition of reagents, the temperature at which polymerization takes place and the polarity of the solvent. Trends were assessed in terms of molecular weight, molecular weight distribution and tacticity. In addition, a second monomer addition test was carried out to verify that the polymerization was truly a living one, and a kinetic study was attempted. Studies to investigate the effect of changing the order of addition of reagents showed that polymer with similar polydispersities and tacticities are produced whether the pre-mixing (mixing initiator and cocatalyst before addition of monomer) or the post-mixing (mixing monomer and cocatalyst before addition of initiator) method were used. However, polymerizations using the post-mixing mixing method demonstrated lower initiator efficiencies, possibly indicating a different initiating species. Investigations into the effect of changing the polymerization temperature show the molecular weight distribution to narrow as the temperature decreases, although a small amount of low molecular weight tailing was also observed at low temperature. A clear relationship between tacticity and temperature was observed with syndiotacticity increasing with decreasing temperature. Changes in solvent polarity were achieved by using mixtures of the standard solvent, toluene, with varying amounts of cyclohexane, tetrahydrofuran or dichloromethane. Experiments at low solvent polarity (using toluene/cyclohexane mixtures) showed problems with initiator solubility but produced polymer with lower polydispersity and higher syndiotacticity than in toluene alone. Experiments using toluene/THF mixtures yielded no polymer, thought to be owing to a side reaction between THF and aluminium triisobutyl. Increased solvent polarity, achieved using toluene/dichloromethane mixtures produced polymer with higher polydispersity and at lower yields than the conventional system, but also with higher syndiotacticity. Second monomer addition reactions demonstrated that the polymerization was 'living' since an increase in molecular weight was observed with no increase in polydispersity. Kinetic studies demonstrated the high speed of the polymerization but yielded no useful data.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Post-operative infections resulting from total hip arthroplasty are caused by bacteria such as Staphylococcus aureus and Pseudomonas aeruginosa entering the wound perioperatively or by haemetogenous spread from distant loci of infection. They can endanger patient health and require expensive surgical revision procedures. Gentamicin impregnated poly (methyl methacrylate) bone cement is traditionally used for treatment but is often removed due to harbouring bacterial growth, while bacterial resistance to gentamicin is increasing. The aim of this work was to encapsulate the antibiotics vancomycin, ciprofloxacin and rifampicin within sustained release microspheres composed of the biodegradable polymer poly (dl-lactide-co-glycolide) [PLCG] 75:25. Topical administration to the wound in hydroxypropylmethylcellulose gel should achieve high local antibiotic concentrations while the two week in vivo half life of PLCG 75:25 removes the need for expensive surgical retrieval operations. Unloaded and 20% w/w antibiotic loaded PLCG 75:25 microspheres were fabricated using a Water in Oil emulsification with solvent evaporation technique. Microspheres were spherical in shape with a honeycomb-like internal matrix and showed reproducible physical properties. The kinetics of in vitro antibiotic release into newborn calf serum (NCS) and Hank's balanced salt solution (HBSS) at 37°C were measured using a radial diffusion assay. Generally, the day to day concentration of each antibiotic released into NCS over a 30 day period was in excess of that required to kill St. aureus and Ps. auruginosa. Only limited microsphere biodegradation had occurred after 30 days of in vitro incubation in NCS and HBSS at 37°C. The moderate in vitro cytotoxicity of 20% w/w antibiotic loaded microspheres to cultured 3T3-L1 cells was antibiotic induced. In conclusion, generated data indicate the potential for 20% w/w antibiotic loaded microspheres to improve the present treatment regimens for infections occurring after total hip arthroplasty such that future work should focus on gaining industrial collaboration for commercial exploitation.