956 resultados para planets and satellites: fundamental parameters
Resumo:
It has become clear over the last few years that many deterministic dynamical systems described by simple but nonlinear equations with only a few variables can behave in an irregular or random fashion. This phenomenon, commonly called deterministic chaos, is essentially due to the fact that we cannot deal with infinitely precise numbers. In these systems trajectories emerging from nearby initial conditions diverge exponentially as time evolves)and therefore)any small error in the initial measurement spreads with time considerably, leading to unpredictable and chaotic behaviour The thesis work is mainly centered on the asymptotic behaviour of nonlinear and nonintegrable dissipative dynamical systems. It is found that completely deterministic nonlinear differential equations describing such systems can exhibit random or chaotic behaviour. Theoretical studies on this chaotic behaviour can enhance our understanding of various phenomena such as turbulence, nonlinear electronic circuits, erratic behaviour of heart and brain, fundamental molecular reactions involving DNA, meteorological phenomena, fluctuations in the cost of materials and so on. Chaos is studied mainly under two different approaches - the nature of the onset of chaos and the statistical description of the chaotic state.
Resumo:
The Earth’s climate, as well as planetary climates in general, is broadly regulated by three fundamental parameters: the total solar irradiance, the planetary albedo and the planetary emissivity. Observations from series of different satellites during the last three decades indicate that these three quantities are generally very stable. The total solar irradiation of some 1,361 W/m2 at 1 A.U. varies within 1 W/m2 during the 11-year solar cycle (Fröhlich 2012). The albedo is close to 29 % with minute changes from year to year but with marked zonal differences (Stevens and Schwartz 2012). The only exception to the overall stability is a minor decrease in the planetary emissivity (the ratio between the radiation to space and the radiation from the surface of the Earth). This is a consequence of the increase in atmospheric greenhouse gas amounts making the atmosphere gradually more opaque to long-wave terrestrial radiation. As a consequence, radiation processes are slightly out of balance as less heat is leaving the Earth in the form of thermal radiation than the amount of heat from the incoming solar radiation. Present space-based systems cannot yet measure this imbalance, but the effect can be inferred from the increase in heat in the oceans where most of the heat accumulates. Minor amounts of heat are used to melt ice and to warm the atmosphere and the surface of the Earth.
Resumo:
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)
Resumo:
We present results from an analysis of stellar population parameters for 7132 galaxies in the 6dF Galaxy Survey Fundamental Plane (FP) sample. We bin the galaxies along the axes, v1, v2 and v3, of the tri-variate Gaussian to which we have fitted the galaxy distribution in effective radius, surface brightness and central velocity dispersion (FP space), and compute median values of stellar age, [Fe/H], [Z/H] and [a/Fe]. We determine the directions of the vectors in FP space along which each of the binned stellar population parameters vary most strongly. In contrast to previous work, we find stellar population trends not just with velocity dispersion and FP residual, but with radius and surface brightness as well. The most remarkable finding is that the stellar population parameters vary through the plane (v1 direction) and across the plane (v3 direction), but show no variation at all along the plane (v2 direction). The v2 direction in FP space roughly corresponds to luminosity density. We interpret a galaxys position along this vector as being closely tied to its merger history, such that early-type galaxies with lower luminosity density are more likely to have undergone major mergers. This conclusion is reinforced by an examination of the simulations of Kobayashi, which show clear trends of merger history with v2.
Resumo:
A complete census of planetary systems around a volume-limited sample of solar-type stars (FGK dwarfs) in the Solar neighborhood (d a parts per thousand currency signaEuro parts per thousand 15 pc) with uniform sensitivity down to Earth-mass planets within their Habitable Zones out to several AUs would be a major milestone in extrasolar planets astrophysics. This fundamental goal can be achieved with a mission concept such as NEAT-the Nearby Earth Astrometric Telescope. NEAT is designed to carry out space-borne extremely-high-precision astrometric measurements at the 0.05 mu as (1 sigma) accuracy level, sufficient to detect dynamical effects due to orbiting planets of mass even lower than Earth's around the nearest stars. Such a survey mission would provide the actual planetary masses and the full orbital geometry for all the components of the detected planetary systems down to the Earth-mass limit. The NEAT performance limits can be achieved by carrying out differential astrometry between the targets and a set of suitable reference stars in the field. The NEAT instrument design consists of an off-axis parabola single-mirror telescope (D = 1 m), a detector with a large field of view located 40 m away from the telescope and made of 8 small movable CCDs located around a fixed central CCD, and an interferometric calibration system monitoring dynamical Young's fringes originating from metrology fibers located at the primary mirror. The mission profile is driven by the fact that the two main modules of the payload, the telescope and the focal plane, must be located 40 m away leading to the choice of a formation flying option as the reference mission, and of a deployable boom option as an alternative choice. The proposed mission architecture relies on the use of two satellites, of about 700 kg each, operating at L2 for 5 years, flying in formation and offering a capability of more than 20,000 reconfigurations. The two satellites will be launched in a stacked configuration using a Soyuz ST launch vehicle. The NEAT primary science program will encompass an astrometric survey of our 200 closest F-, G- and K-type stellar neighbors, with an average of 50 visits each distributed over the nominal mission duration. The main survey operation will use approximately 70% of the mission lifetime. The remaining 30% of NEAT observing time might be allocated, for example, to improve the characterization of the architecture of selected planetary systems around nearby targets of specific interest (low-mass stars, young stars, etc.) discovered by Gaia, ground-based high-precision radial-velocity surveys, and other programs. With its exquisite, surgical astrometric precision, NEAT holds the promise to provide the first thorough census for Earth-mass planets around stars in the immediate vicinity of our Sun.
Resumo:
Context. Spectrally resolved long-baseline optical/IR interferometry of rotating stars opens perspectives to investigate their fundamental parameters and the physical mechanisms that govern their interior, photosphere, and circumstellar envelope structures. Aims. Based on the signatures of stellar rotation on observed interferometric wavelength-differential phases, we aim to measure angular diameters, rotation velocities, and orientation of stellar rotation axes. Methods. We used the AMBER focal instrument at ESO-VLTI in its high-spectral resolution mode to record interferometric data on the fast rotator Achernar. Differential phases centered on the hydrogen Br gamma line (K band) were obtained during four almost consecutive nights with a continuous Earth-rotation synthesis during similar to 5h/night, corresponding to similar to 60 degrees position angle coverage per baseline. These observations were interpreted with our numerical code dedicated to long-baseline interferometry of rotating stars. Results. By fitting our model to Achernar's differential phases from AMBER, we could measure its equatorial radius R-eq = 11.6 +/- 0.3 R-circle dot, equatorial rotation velocity V-eq = 298 +/- 9 km s(-1), rotation axis inclination angle i = 101.5 +/- 5.2 degrees, and rotation axis position angle (from North to East) PA(rot) = 34.9 +/- 1.6 degrees. From these parameters and the stellar distance, the equatorial angular diameter circle divide(eq) of Achernar is found to be 2.45 +/- 0.09 mas, which is compatible with previous values derived from the commonly used visibility amplitude. In particular, circle divide(eq) and PA(rot) measured in this work with VLTI/AMBER are compatible with the values previously obtained with VLTI/VINCI. Conclusions. The present paper, based on real data, demonstrates the super-resolution potential of differential interferometry for measuring sizes, rotation velocities, and orientation of rotating stars in cases where visibility amplitudes are unavailable and/or when the star is partially or poorly resolved. In particular, we showed that differential phases allow the measurement of sizes up to similar to 4 times smaller than the diffraction-limited angular resolution of the interferometer.
Resumo:
Universidade Estadual de Campinas. Faculdade de Educação Física
SSSPM J1102-3431 brown dwarf characterization from accurate proper motion and trigonometric parallax
Resumo:
Context. In 2005, Scholz and collaborators discovered, in a proper motion survey, a young brown dwarf SSSPM J1102-3431 (SSSPM J1102) of spectral type M8.5, probable member of the TW Hydrae Association and possible companion of the T Tauri star TWHya. The physical characterization of SSSPM J1102 was based on the hypothesis that it forms a binary system with TWHya. The recent discovery of a probable giant planet with a very short-period inside the TW Hya protoplanetary disk, as well as a disk around SSSPM J1102, make it especially interesting and important to measure well the physical parameters of SSSPM J1102. Aims. Trigonometric parallax and proper motion measurements of SSSPM J1102 are necessary to test for TWA membership and, thus, to determine the mass and age of this young brown dwarf and the possibility that it forms a wide binary system with TW Hya. Methods. Two years of regular observations at the ESO NTT/SUSI2 telescope have enabled us to determine the trigonometric parallax and proper motion of SSSPM J1102. Results. With our accurate distance determination of 55.2(-1.4)(+1.6) pc and proper motions of (-67.2, -14.0) +/- 0.6 mas/yr, we could confirm SSSPM J1102 as a very probable member of TWA. Assuming the TW Hydrae association age of 5-10 Myr, the evolutionary models compared to the photometry of this young brown dwarf indicate a mass of M = 25 +/- 5 M(Jup) and an effective temperature T(eff) = 2550 +/- 100 K. Conclusions. Our parallax and proper motion determination allow us to precisely describe the physical properties of this low mass object and to confirm its TWA membership. Our results indicate that SSSPMJ1102 may be a very wide separation companion of the star TW Hya.
Resumo:
We present results from the PARallaxes of Southern Extremely Cool objects ( PARSEC) program, an observational program begun in 2007 April to determine parallaxes for 122 L and 28 T southern hemisphere dwarfs using the Wide Field Imager on the ESO 2.2 m telescope. The results presented here include parallaxes of 10 targets from observations over 18 months and a first version proper motion catalog. The proper motions were obtained by combining PARSEC observations astrometrically reduced with respect to the Second US Naval Observatory CCD Astrograph Catalog, and the Two Micron All Sky Survey Point Source Catalog. The resulting median proper motion precision is 5 mas yr(-1) for 195,700 sources. The 140 0.3 deg(2) fields sample the southern hemisphere in an unbiased fashion with the exception of the galactic plane due to the small number of targets in that region. The proper motion distributions are shown to be statistically well behaved. External comparisons are also fully consistent. We will continue to update this catalog until the end of the program, and we plan to improve it including also observations from the GSC2.3 database. We present preliminary parallaxes with a 4.2 mas median precision for 10 brown dwarfs, two of which are within 10 pc. These increase the present number of L dwarfs by 20% with published parallaxes. Of the 10 targets, seven have been previously discussed in the literature: two were thought to be binary, but the PARSEC observations show them to be single; one has been confirmed as a binary companion and another has been found to be part of a binary system, both of which will make good benchmark systems. These results confirm that the foreseen precision of PARSEC can be achieved and that the large field of view will allow us to identify wide binary systems. Observations for the PARSEC program will end in early 2011 providing three to four years of coverage for all targets. The main expected outputs are: more than a 100% increase in the number of L dwarfs with parallaxes, increment in the number of objects per spectral subclass up to L9-in conjunction with published results-to at least 10, and to put sensible limits on the general binary fraction of brown dwarfs. We aim to contribute significantly to the understanding of the faint end of the H-R diagram and of the L/T transition region.
Resumo:
Aims. We determine the age and mass of the three best solar twin candidates in open cluster M 67 through lithium evolutionary models. Methods. We computed a grid of evolutionary models with non-standard mixing at metallicity [Fe/H] = 0.01 with the Toulouse-Geneva evolution code for a range of stellar masses. We estimated the mass and age of 10 solar analogs belonging to the open cluster M 67. We made a detailed study of the three solar twins of the sample, YPB637, YPB1194, and YPB1787. Results. We obtained a very accurate estimation of the mass of our solar analogs in M 67 by interpolating in the grid of evolutionary models. The three solar twins allowed us to estimate the age of the open cluster, which is 3.87(-0.66)(+0.55) Gyr, which is better constrained than former estimates. Conclusions. Our results show that the 3 solar twin candidates have one solar mass within the errors and that M 67 has a solar age within the errors, validating its use as a solar proxy. M 67 is an important cluster when searching for solar twins.
Resumo:
Aims. Solar colors have been determined on the uvby-beta photometric system to test absolute solar fluxes, to examine colors predicted by model atmospheres as a function of stellar parameters (T(eff), log g, [Fe/H]), and to probe zero-points of T(eff) and metallicity scales. Methods. New uvby-beta photometry is presented for 73 solar-twin candidates. Most stars of our sample have also been observed spectroscopically to obtain accurate stellar parameters. Using the stars that most closely resemble the Sun, and complementing our data with photometry available in the literature, the solar colors on the uvby-beta system have been inferred. Our solar colors are compared with synthetic solar colors computed from absolute solar spectra and from the latest Kurucz (ATLAS9) and MARCS model atmospheres. The zero-points of different T(eff) and metallicity scales are verified and corrections are proposed. Results. Our solar colors are (b - y)(circle dot) = 0.4105 +/- 0.0015, m(1,circle dot) = 0.2122 +/- 0.0018, c(1,circle dot) = 0.3319 +/- 0.0054, and beta(circle dot) = 2.5915 +/- 0.0024. The (b - y)(circle dot) and m(1,circle dot) colors obtained from absolute spectrophotometry of the Sun agree within 3-sigma with the solar colors derived here when the photometric zero-points are determined from either the STIS HST observations of Vega or an ATLAS9 Vega model, but the c(1,circle dot) and beta(circle dot) synthetic colors inferred from absolute solar spectra agree with our solar colors only when the zero-points based on the ATLAS9 model are adopted. The Kurucz solar model provides a better fit to our observations than the MARCS model. For photometric values computed from the Kurucz models, (b - y)(circle dot) and m(1,circle dot) are in excellent agreement with our solar colors independently of the adopted zero-points, but for c(1,circle dot) and beta circle dot agreement is found only when adopting the ATLAS9 zero-points. The c(1,circle dot) color computed from both the Kurucz and MARCS models is the most discrepant, probably revealing problems either with the models or observations in the u band. The T(eff) calibration of Alonso and collaborators has the poorest performance (similar to 140 K off), while the relation of Casagrande and collaborators is the most accurate (within 10 K). We confirm that the Ramirez & Melendez uvby metallicity calibration, recommended by Arnadottir and collaborators to obtain [Fe/H] in F, G, and K dwarfs, needs a small (similar to 10%) zero-point correction to place the stars and the Sun on the same metallicity scale. Finally, we confirm that the c(1) index in solar analogs has a strong metallicity sensitivity.
Resumo:
Context. The space telescope CoRoT searches for transiting extrasolar planets by continuously monitoring the optical flux of thousands of stars in several fields of view. Aims. We report the discovery of CoRoT-10b, a giant planet on a highly eccentric orbit (e = 0.53 +/- 0.04) revolving in 13.24 days around a faint (V = 15.22) metal-rich K1V star. Methods. We used CoRoT photometry, radial velocity observations taken with the HARPS spectrograph, and UVES spectra of the parent star to derive the orbital, stellar, and planetary parameters. Results. We derive a radius of the planet of 0.97 +/- 0.07 R(Jup) and a mass of 2.75 +/- 0.16 M(Jup). The bulk density,rho(p) = 3.70 +/- 0.83 g cm(-3), is similar to 2.8 that of Jupiter. The core of CoRoT-10b could contain up to 240 M(circle plus) of heavy elements. Moving along its eccentric orbit, the planet experiences a 10.6-fold variation in insolation. Owing to the long circularisation time, tau(circ) > 7 Gyr, a resonant perturber is not required to excite and maintain the high eccentricity of CoRoT-10b.
Resumo:
Context. Analysis of ages and metallicities of star clusters in the Magellanic Clouds provide information for studies on the chemical evolution of the Clouds and other dwarf irregular galaxies. Aims. The aim is to derive ages and metallicities from integrated spectra of 14 star clusters in the Small Magellanic Cloud, including a few intermediate/old age star clusters. Methods. Making use of a full-spectrum fitting technique, we compared the integrated spectra of the sample clusters to three different sets of single stellar population models, using two fitting codes available in the literature. Results. We derive the ages and metallicities of 9 intermediate/old age clusters, some of them previously unstudied, and 5 young clusters. Conclusions. We point out the interest of the newly identified as intermediate/old age clusters HW1, NGC 152, Lindsay 3, Lindsay 11, and Lindsay 113. We also confirm the old ages of NGC 361, NGC 419, Kron 3, and of the very well-known oldest SMC cluster, NGC 121.
Resumo:
Context. Tight binaries discovered in young, nearby associations are ideal targets for providing dynamical mass measurements to test the physics of evolutionary models at young ages and very low masses. Aims. We report the binarity of TWA22 for the first time. We aim at monitoring the orbit of this young and tight system to determine its total dynamical mass using an accurate distance determination. We also intend to characterize the physical properties (luminosity, effective temperature, and surface gravity) of each component based on near-infrared photometric and spectroscopic observations. Methods. We used the adaptive-optics assisted imager NACO to resolve the components, to monitor the complete orbit and to obtain the relative near-infrared photometry of TWA22 AB. The adaptive-optics assisted integral field spectrometer SINFONI was also used to obtain medium-resolution (R(lambda) = 1500-2000) spectra in JHK bands. Comparison with empirical and synthetic librairies were necessary for deriving the spectral type, the effective temperature, and the surface gravity for each component of the system. Results. Based on an accurate trigonometric distance (17.5 +/- 0.2 pc) determination, we infer a total dynamical mass of 220 +/- 21 M(Jup) for the system. From the complete set of spectra, we find an effective temperature T(eff) = 2900(-200)(+200) K for TWA22A and T(eff) = 2900(-100)(+200) for TWA22 B and surface gravities between 4.0 and 5.5 dex. From our photometry and an M6 +/- 1 spectral type for both components, we find luminosities of log(L/L(circle dot)) = -2.11 +/- 0.13 dex and log(L/L(circle dot)) = -2.30 +/- 0.16 dex for TWA22 A and B, respectively. By comparing these parameters with evolutionary models, we question the age and the multiplicity of this system. We also discuss a possible underestimation of the mass predicted by evolutionary models for young stars close to the substellar boundary.
Resumo:
Context. HD 181231 is a B5IVe star, which has been observed with the CoRoT satellite during similar to 5 consecutive months and simultaneously from the ground in spectroscopy and spectropolarimetry. Aims. By analysing these data, we aim to detect and characterize as many pulsation frequencies as possible, to search for the presence of beating effects possibly at the origin of the Be phenomenon. Our results will also provide a basis for seismic modelling. Methods. The fundamental parameters of the star are determined from spectral fitting and from the study of the circumstellar emission. The CoRoT photometric data and ground-based spectroscopy are analysed using several Fourier techniques: CLEAN-NG, PASPER, and TISAFT, as well as a time-frequency technique. A search for a magnetic field is performed by applying the LSD technique to the spectropolarimetric data. Results. We find that HD 181231 is a B5IVe star seen with an inclination of similar to 45 degrees. No magnetic field is detected in its photosphere. We detect at least 10 independent significant frequencies of variations among the 54 detected frequencies, interpreted in terms of non-radial pulsation modes and rotation. Two longer-term variations are also detected: one at similar to 14 days resulting from a beating effect between the two main frequencies of short-term variations, the other at similar to 116 days due either to a beating of frequencies or to a zonal pulsation mode. Conclusions. Our analysis of the CoRoT light curve and ground-based spectroscopic data of HD 181231 has led to the determination of the fundamental and pulsational parameters of the star, including beating effects. This will allow a precise seismic modelling of this star.