811 resultados para phosphorus buffer capacity
Resumo:
The aim of this work is to develop 3-acyl prodrugs of the potent analgesic morphine-6-sulfate (M6S). These are expected to have higher potency and/or exhibit longer duration of analgesic action than the parent compound. M6S and the prodrugs were synthesized, then purified either by recrystallization or by semi-preparative HPLC and the structures confirmed by mass spectrometry, IR spectrophotometry and by detailed 1- and 2-D NMR studies. The lipophilicities of the compounds were assessed by a combination of shake-flask, group contribution and HPLC retention methods. The octanol-buffer partition coefficient could only be obtained directly for 3-heptanoylmorphine-6-sulfate, using the shake-flask method. The partition coefficients (P) for the remaining prodrugs were estimated from known methylene group contributions. A good linear relationship between log P and the HPLC log capacity factors was demonstrated. Hydrolysis of the 3-acetyl prodrug, as a representative of the group, was found to occur relatively slowly in buffers (pH range 6.15-8.01), with a small buffer catalysis contribution. The rates of enzymatic hydrolysis of the 3-acyl group in 10% rat blood and in 10% rat brain homogenate were investigated. The prodrugs followed apparent first order hydrolysis kinetics, with a significantly faster hydrolysis rate found in 10% rat brain homogenate than in 10% rat blood for all compounds. (C) 1998 Elsevier Science B.V. All rights reserved.
Resumo:
Hedley er al. (1982) developed what has become the most widely used land modified), phosphorus (P) fractionation technique. It consists of sequential extraction of increasingly less phytoavailable P pools. Extracts are centrifuged at up to 25000 g (RCF) and filtered to 0.45 mu m to ensure that soil is not lost between extractions. In attempting to transfer this method to laboratories with limited facilities, it was considered that access to high-speed centrifuges, and the cost of frequent filtration may prevent adoption of this P fractionation technique. The modified method presented here was developed to simplify methodology, reduce cost, and therefore increase accessibility of P fractionation technology. It provides quantitative recovery of soil between extractions, using low speed centrifugation without filtration. This is achieved by increasing the ionic strength of dilute extracts, through the addition of NaCl, to flocculate clay particles. Addition of NaCl does not change the amount of P extracted. Flocculation with low speed centrifugation produced extracts comparable with those having undergone filtration (0.025 mu m). A malachite green colorimetric method was adopted for inorganic P determination, as this simple manual method provides high sensitivity with negligible interference from other anions. This approach can also be used for total P following digestion, alternatively non-discriminatory methods, such as inductively coupled plasma atomic emission spectroscopy, may be employed.
Resumo:
Tarpon have high resting or routine hematocrits (Hct) (37.6+/-3.4%) and hemoglobin concentrations (120.6+/-7.3 g 1(-1)) that increased significantly following bouts of angling-induced exercise (51.9+/-3.7% and 142.8+/-13.5 g 1(-1), respectively). Strenuous exercise was accompanied by an approximately tenfold increase in blood lactate and a muscle metabolite profile indicative of a high energy demand teleost. Routine blood values were quickly restored only when this facultative air-breathing fish was given access to atmospheric air. In vitro studies of oxygen transport capacity, a function of carrying capacity and viscosity, revealed that the optimal Hct range corresponded to that observed in fish under routine behaviour. During strenuous exercise however, further increase in viscosity was largely offset by a pronounced reduction in the shear-dependence of blood which conformed closely to an ideal Newtonian fluid. The mechanism for this behaviour of the erythrocytes appears to involve the activation of surface adrenergic receptors because pre-treatment with propranolol abolished the response. High levels of activity in tarpon living in hypoxic habitats are therefore supported by an elevated Hct with adrenergically mediated viscosity reduction, and air-breathing behaviour that enables rapid metabolic recovery. (C) 2002 Elsevier Science Inc. All rights reserved.
Resumo:
Overcommitment of development capacity or development resource deficiencies are important problems in new product development (NPD). Existing approaches to development resource planning have largely neglected the issue of resource magnitude required for NPD. This research aims to fill the void by developing a simple higher-level aggregate model based on an intuitive idea: The number of new product families that a firm can effectively undertake is bound by the complexity of its products or systems and the total amount of resources allocated to NPD. This study examines three manufacturing companies to verify the proposed model. The empirical results confirm the study`s initial hypothesis: The more complex the product family, the smaller the number of product families that are launched per unit of revenue. Several suggestions and implications for managing NPD resources are discussed, such as how this study`s model can establish an upper limit for the capacity to develop and launch new product families.
Resumo:
Background. Vascular calcification (VC) is commonly seen in patients with chronic kidney disease (CKD). Elevated levels of phosphate and parathormone (PTH) are considered nontraditional risk factors for VC. It has been shown that, in vitro, phosphate transforms vascular smooth muscle cells (VSMCs) into calcifying cells, evidenced by upregulated expression of runt-related transcription factor 2 (Runx2), whereas PTH is protective against VC. In addition, Runx2 has been detected in calcified arteries of CKD patients. However, the in vivo effect of phosphate and PTH on Runx2 expression remains unknown. Methods. Wistar rats were submitted to parathyroidectomy, 5/6 nephrectomy (Nx) and continuous infusion of 1-34 rat PTH (at physiological or supraphysiological rates) or were sham-operated. Diets varied only in phosphate content, which was low (0.2%) or high (1.2%). Biochemical, histological, immunohistochemistry and immunofluorescence analyses were performed. Results. Nephrectomized animals receiving high-PTH infusion presented VC, regardless of the phosphate intake level. However, phosphate overload and normal PTH infusion induced phenotypic changes in VSMCs, as evidenced by upregulated aortic expression of Runx2. High-PTH infusion promoted histological changes in the expression of osteoprotegerin and type I collagen in calcified arteries. Conclusions. Phosphate, by itself is a potential pathogenic factor for VC. It is of note that phosphate overload, even without VC, was associated with overexpression of Runx2 in VSMCs. The mineral imbalance often seen in patients with CKD should be corrected.
Resumo:
Conditions which influence the viability, integrity, and extraction efficiency of the isolated perfused rat liver were examined to establish optimal conditions for subsequent work in reperfusion injury studies including the choice of buffer, use of oncotic agents, hematocrit, perfusion flow rate, and pressure. Rat livers were perfused with MOPS-buffered Ringer solution with or without erythrocytes. Perfusates were collected and analyzed for blood gases, electrolytes, enzymes, radioactivity in MID studies, and lignocaine in extraction studies. Liver tissue was sampled for histological examinations, and wet:dry weight of the liver was also determined. MOPS-buffered Ringer solution was found to be superior to Krebs bicarbonate buffer, in terms of pH control and buffering capacity, especially during any prolonged period of liver perfusion. A pH of 7.2 is chosen for perfusion since this is the physiological pH of the portal blood. The presence of albumin was important as an oncotic agent, particularly when erythrocytes were used in the perfusate. Perfusion pressure, resistance, and vascular volume are how-dependent and the inclusion of erythrocytes in the perfusate substantially altered the flow characteristics for perfusion pressure and resistance but not vascular volume. Lignocaine extraction was relatively flow-independent. Perfusion injury as defined by enzyme release and tissue fine structure was closely related to the supply of O-2. The optimal conditions for liver perfusion depend upon an adequate supply of oxygen. This can be achieved by using either erythrocyte-free perfusate at a how rate greater than 6 ml/min/g liver or a 20% erythrocyte-containing perfusate at 2 ml/min/g. (C) 1996 Academic Press, Inc.
Resumo:
Background Pulmonary function tests (PFT), particularly spirometry and lung diffusing capacity for carbon monoxide (DL(CO)), have been considered useful methods for the detection of the progression of interstitial asbestos abnormalities as indicated by high-resolution computed tomography (HRCT). However, it is currently unknown which of these two tests correlates best with anatomical changes over time. Methods In this study, we contrasted longitudinal changes (3-9 years follow-up) in PFTs at rest and during exercise with interstitial abnormalities evaluated by HRCT in 63 ex-workers with mild-to-moderate asbestosis. Results At baseline, patients presented with low-grade asbestosis (Huuskonen classes I-II), and most PFT results were within the limits of normality. In the follow-up, most subjects had normal spirometry, static lung volumes and arterial blood gases. In contrast, frequency of DL(CO) abnormalities almost doubled (P < 0.05). Twenty-three (36.5%) subjects increased the interstitial marks on HRCT. These had significantly larger declines in DL(CO) compared to patients who remained stable (0.88 vs. 0.31 ml/min/mm Hg/year and 3.5 vs. 1.2%/year, respectively; P < 0.05). In contrast, no between-group differences were found for the other functional tests, including spirometry (P > 0.05). Conclusions These data demonstrate that the functional consequences of progression of HRCT abnormalities in mild-to-moderate asbestosis are better reflected by decrements in DL(CO) than by spirometric changes. These results might have important practical implications for medico-legal evaluation of this patient population. Am. J. Ind. Med. 54:185-193, 2011. (c) 2010 Wiley-Liss, Inc.
Resumo:
Background: A previous study associated CD34(+) levels with NYHA functional class in heart failure patients. The aim of this study was to correlate CD34(+) levels to exercise capacity, functional class, quality of life and norepinephrine in heart failure patients. Methods: Twenty three sedentary patients (52 +/- 7 years, 78% male) answered the Minnesota Living with Heart Failure Questionnaire and rested for 20 minutes before an investigator collect a blood sample. After this, patients performed a cardiopulmonary exercise test to determine the heart rate at anaerobic and ventilatory threshold and oxygen consumption at peak effort, at anaerobic and ventilatory threshold. One other blood sample was collected during the peak effort to investigate the norepinephrine and CD34(+) levels. Results: Rest percentage of CD34(+) did not show correlation with: left ventricle ejection fraction (r = 0.03, p = 0.888), peakVO(2) (r = 0.32, p = 0.13), VO(2) at anaerobic threshold (VO(2)AT) (r = 0.03, p = 0.86), VO(2) at ventilatory threshold (VO(2)VT) (r = 0.36, p = 0.08), NYHA functional class (r = -0.2, p = 0.35), quality of life (Minnesota) (r = -0.17, p = 0.42). CD34(+) did not show correlation, either, with: peak VO(2) (r = 0.38, p = 0.06), VO(2)AT (r = 0.09, p = 0.65), VO(2)VT (r = 0.43, p = 0.4), NYHA functional class (r = -0.13, p = 0.54), quality of life (r = 0.00, p = 0.99). Conclusions: CD34(+) levels did not correlate with exercise capacity, functional class, quality of life and norepinephrine. Percentage of CD34(+) levels did not increase during the cardiopulmonary exercise test in heart failure patients. (Cardiol J 2009; 16, 5: 426-431)
Resumo:
Endomyocardial fibrosis (EMF) is a restrictive cardiomyopathy manifested mainly by diastolic heart failure. It is recognized that diastole is an important determinant of exercise capacity. The purpose of this study was to determine whether resting echocardiographic parameters might predict oxygen consumption (VO(2p)) by ergoespirometry and the prognostic role of functional capacity in EMF patients. A total of 32 patients with biventricular EMF (29 women, 55.3 +/- 11.4 years) were studied by echocardiography and ergoespirometry. The relationship between the echocardiographic indexes and the percentage of predicted VO(2p) (%VO(2p)) was investigated by the `stepwise` linear regression analysis. The median VO(2p) was 11 +/- 3 mL/kg/min and the %VO(2p) was 53 +/- 9%. There was a correlation of %VO(2p) with an average of A` at four sites of the mitral annulus (A` peak, r = 0.471, P = 0.023), E`/A` of the inferior mitral annulus (r = -0.433, P = 0.044), and myocardial performance index (r = -0.352, P = 0.048). On multiple regression analysis, only A` peak was an independent predictor of %VO(2p) (%VO(2p)= 26.34 + 332.44 x A` peak). EMF patients with %VO(2p)< 53% had an increased mortality rate with a relative risk of 8.47. In EMF patients, diastolic function plays an important role in determining the limitations to exercise and %VO(2p) has a prognostic value.
Resumo:
Background and objective: Hyperinflation with a decrease in inspiratory capacity (IC) is a common presentation for both unstable and stable COPD patients. As CPAP can reduce inspiratory load, possibly secondary to a reduction in hyperinflation, this study examined whether CPAP would increase IC in stable COPD patients. Methods: Twenty-one stable COPD patients (nine emphysema, 12 chronic bronchitis) received a trial of CPAP for 5 min at 4, 7 and 11 cmH(2)O. Fast and slow VC (SVC) were measured before and after each CPAP trial. In patients in whom all three CPAP levels resulted in a decreased IC, an additional trial of CPAP at 2 cmH(2)O was conducted. For each patient, a `best CPAP` level was defined as the one associated with the greatest IC. This pressure was then applied for an additional 10 min followed by spirometry. Results: Following application of the `best CPAP`, the IC and SVC increased in 15 patients (nine emphysema, six chronic bronchitis). The mean change in IC was 159 mL (95% CI: 80-237 mL) and the mean change in SVC was 240 mL (95% CI: 97-386 mL). Among these patients, those with emphysema demonstrated a mean increase in IC of 216 mL (95% CI: 94-337 mL). Six patients (all with chronic bronchitis) did not demonstrate any improvement in IC. Conclusions: The best individualized CPAP can increase inspiratory capacity in patients with stable COPD, especially in those with emphysema.
Resumo:
Severe obesity has been associated with adverse effects on physical capacity. In a prospective study, the aerobic capacity of severely obese patients was measured in order to observe the physiological response to weight loss from bariatric surgery. Sixty-five consecutive patients (40.4 +/- 8.4 years old; 93.8% female; body mass index = 49.4 +/- 5.4 kg/m(2)) were evaluated before bariatric surgery and then 6 and 12 months after surgery. Aerobic capacity was assessed with a scientific treadmill to measure maximal oxygen consumption (VO(2max)), heart rate, blood pressure, time on the treadmill, and distance walked (modified Bruce test). For the three observational periods, VO(2max) was 25.4 +/- 9.3, 29.8 +/- 8.1, and 36.7 +/- 8.3 ml/kg/min; time on the treadmill was 5.4 +/- 1.4, 6.4 +/- 1.6, and 8.8 +/- 1.0 min; and distance walked was 401.8 +/- 139.1, 513.4 +/- 159.9, and 690.5 +/- 76.2 m. For these variables, significant results (p = 0.0000) were observed for the two postoperative periods in relation to the preoperative period. Severely obese individuals increased their aerobic capacity after successful bariatric surgery. The data also suggests that a positive and progressive relationship between weight loss and improvement in fitness as a moderate loss of weight 6 months after surgery already showed some benefit and an additional reduction in weight was associated with a better performance in the aerobic capacity tests at the 12-month follow-up.
Resumo:
Background: The 6-minute walk test (6MWT) is a well-known instrument for assessing the functional capacity of a variety of groups, including the obese. It is a simple, low-cost and easily applied method to objectively assess the level of exercise capacity. The aim of the present study was to study the functional capacity of a severely obese population before and after bariatric surgery. Methods: A total of 51 patients were studied. Of the 51 patients, 86.2% were women, and the mean age was 40.9 +/- 9.2 years. All 51 patients were evaluated preoperatively and 49 were evaluated 7-12 months postoperatively. The initial body mass index was 51.1 +/- 9.2 kg/m(2), and the final body mass index was 28.2 +/- 8.1 kg/m(2). All patients underwent Roux-en-Y gastric bypass. The 6MWT was performed in a hospital corridor, with patients attempting to cover as much distance as they could, walking back and forth for as long as possible within 6 minutes at their regular pace. The total distance, Borg Scale of perceived exhaustion, modified Borg dyspnea scale for shortness of breath, and physical complaints at the end of the test were recorded. In addition, the heart rate and respiratory frequency were assessed before and after the test. Results: The tolerance was good, and no injuries occurred at either evaluation. The patients` mean distance for the 6MWT was 381.9 +/- 49.3 m before surgery and 467.8 +/- 40.3 m after surgery (p < .0001). Similar results were observed for the other parameters assessed. Conclusion: The 6MWT provided useful information about the functional status of the obese patients undergoing bariatric surgery. A simple, safe, and powerful method to assess functional capacity of severely obese patients, the 6MWT is an objective test that might replace the conventional treadmill test for these types of patients. (Surg Obes Relat Dis 2009;5:540-543.) (C) 2009 American Society for Metabolic and Bariatric Surgery. All rights reserved.
Resumo:
Background Diet seems to represent, directly or indirectly, 35% of all cancer reports. In this study, the influence of dietary protein on the growth of melanoma B16F10 was evaluated through analyses of cell cycle phases and proliferative capacity. Methods Flow cytometry and argyrophilic nucleolar organizer regions (AgNORs) technique were applied in mice bearing B16F10 melanoma cells fed on different dietary proteins. All data were submitted to statistical analyses. Results The G0/G1 phase increased for the animal groups fed bovine collagen hydrolysate (BCH) or BCH-P1 + whey protein isolate (WPI), compared with mice receiving only WPI, for all dietary groups treated and nontreated with paclitaxel. Mice that received BCH + WPI treated with paclitaxel showed the highest percentage of apoptosis compared with WPI group. AgNORs, total nucleolar organizer regions (NORs)/cells and dot number/cell for all dietary protein groups nontreated with paclitaxel were higher than for the WPI. The only two dietary protein groups treated with paclitaxel that presented higher total NORs and dot number/cell than the WPI group were BCH + WPI and BCH-P1 + WPI. Conclusions A significantly lower proliferative capacity and larger number of cells in the G0/G1 phase were observed for the dietary protein groups combining the two collagen hydrolysates, BCH or BCH-P1 with WPI, treated with paclitaxel. Castro GA, Maria DA, Rodrigues CJ, Sgarbieri VC. Analysis of cell cycle phases and proliferative capacity in mice bearing melanoma maintained on different dietary proteins.