948 resultados para peroneus nerve
Resumo:
Sodium, potassium adenosine triphosphatase (Na,K-ATPase) is a membrane-bound enzyme that maintains the Na+ and K+ gradients used in the nervous system for generation and transmission of bioelectricity. Recently, its activity has also been demonstrated during nerve regeneration. The present study was undertaken to investigate the ultrastructural localization and distribution of Na,K-ATPase in peripheral nerve fibers. Small blocks of the sciatic nerves of male Wistar rats weighing 250-300g were excised, divided into two groups, and incubated with and without substrate, the para-nitrophenyl phosphate (pNPP). The material was processed for transmission electron microscopy, and the ultra-thin sections were examined in a Philips CNI 100 (TM) electron microscope. The deposits of reaction product were localized mainly on the axolemma, on axoplasmic profiles, and irregularly dispersed on the myelin sheath, but not in the unmyelinated axons. In the axonal membrane, the precipitates were regularly distributed on the cytoplasmic side. These results together with published data warrant further studies for the diagnosis and treatment of neuropathies with compromised Na,K-ATPase activity. (c) 2007 Elsevier Ltd. All rights reserved.
Resumo:
After in vitro culture, we analyzed cytogenetically four acoustic nerve neurinomas, one intraspinal neurinoma and one neurofibroma obtained from unrelated patients. Monosomy of chromosomes 22 and 16 was an abnormality common to all cases, followed in frequency by loss of chromosomes 18 (three cases) and chromosomes 8, 17 and 19 (two cases). Trisomy of chromosome 20 was also detected in two cases. Structural rearrangements were detected at low frequencies, with del(10)(p12) being present in two cases. In addition, we observed cell subpopulations showing a certain degree of genetic instability, reflected by the presence of polyploid cells with inconsistent abnormalities, endoreduplications and telomeric associations resulting in dicentric chromosomes. It is probable that these cytogenetic abnormalities represent some kind of evolutionary advantage for the in vitro progression of nerve sheath tumors.
Resumo:
We describe a combined stain for simultaneous demonstration of the preterminal axons and cholinesterase activity at myoneural junctions of mammalian muscles. This technique employs acetylthiocholine iodide as the substrate for cholinesterase activity and silver nitrate impregnation of preterminal axons. The procedure is rapid, simple and uses fresh muscles. Intramuscular nerves, preterminal axons and myoneural junctions are stained simultaneously brown or black with minimal background staining of connective tissue and muscle fibers.