425 resultados para penicillin
Resumo:
RÉSUMÉ Le but d'un traitement antimicrobien est d'éradiquer une infection bactérienne. Cependant, il est souvent difficile d'en évaluer rapidement l'efficacité en utilisant les techniques standard. L'estimation de la viabilité bactérienne par marqueurs moléculaires permettrait d'accélérer le processus. Ce travail étudie donc la possibilité d'utiliser le RNA ribosomal (rRNA) à cet effet. Des cultures de Streptococcus gordonii sensibles (parent Wt) et tolérants (mutant Tol 1) à l'action bactéricide de la pénicilline ont été exposées à différents antibiotiques. La survie bactérienne au cours du temps a été déterminée en comparant deux méthodes. La méthode de référence par compte viable a été comparée à une méthode moléculaire consistant à amplifier par PCR quantitative en temps réel une partie du génome bactérien. La cible choisie devait refléter la viabilité cellulaire et par conséquent être synthétisée de manière constitutive lors de la vie de la bactérie et être détruite rapidement lors de la mort cellulaire. Le choix s'est porté sur un fragment du gène 16S-rRNA. Ce travail a permis de valider ce choix en corrélant ce marqueur moléculaire à la viabilité bactérienne au cours d'un traitement antibiotique bactéricide. De manière attendue, les S. gordonii sensibles à la pénicilline ont perdu ≥ 4 log10 CFU/ml après 48 heures de traitement par pénicilline alors que le mutant tolérant Tol1 en a perdu ≥ 1 log10 CFU/ml. De manière intéressant, la quantité de marqueur a augmenté proportionnellement au compte viable durant la phase de croissance bactérienne. Après administration du traitement antibiotique, l'évolution du marqueur dépendait de la capacité de la bactérie à survivre à l'action de l'antibiotique. Stable lors du traitement des souches tolérantes, la quantité de marqueur détectée diminuait de manière proportionnelle au compte viable lors du traitement des souches sensibles. Cette corrélation s'est confirmée lors de l'utilisation d'autres antibiotiques bactéricides. En conclusion, l'amplification par PCR du RNA ribosomal 16S permet d'évaluer rapidement la viabilité bactérienne au cours d'un traitement antibiotique en évitant le recours à la mise en culture dont les résultats ne sont obtenus qu'après plus de 24 heures. Cette méthode offre donc au clinicien une évaluation rapide de l'efficacité du traitement, particulièrement dans les situations, comme le choc septique, où l'initiation sans délai d'un traitement efficace est une des conditions essentielles du succès thérapeutique. ABSTRACT Assessing bacterial viability by molecular markers might help accelerate the measurement of antibiotic-induced killing. This study investigated whether ribosomal RNA (rRNA) could be suitable for this purpose. Cultures of penicillin-susceptible and penicillin-tolerant (Tol1 mutant) Streptococcus gordonii were exposed to mechanistically different penicillin and levofloxacin. Bacterial survival was assessed by viable counts, and compared to quantitative real-time PCR amplification of either the 16S-rRNA genes (rDNA) or the 16S rRNA, following reverse transcription. Penicillin-susceptible S. gordonii lost ≥ 4 log10 CFU/ml of viability over 48 h of penicillin treatment. In comparison, the Toll mutant lost ≤ 1 log10 CFU/ml. Amplification of a 427-base fragment of 16S rDNA yielded amplicons that increased proportionally to viable counts during bacterial growth, but did not decrease during drug-induced killing. In contrast, the same 427-base fragment amplified from 16S rDNA paralleled both bacterial growth and drug-induced killing. It also differentiated between penicillin-induced killing of the parent and the Toll mutant (≥4 log10 CFU/ml and ≤1 lo10 CFU/ml, respectively), and detected killing by mechanistically unrelated levofloxacin. Since large fragments of polynucleotides might be degraded faster than smaller fragments the experiments were repeated by amplifying a 119-base region internal to the origina1 427-base fragment. The amount of 119-base amplicons increased proportionally to viability during growth, but remained stable during drug treatment. Thus, 16S rRNA was a marker of antibiotic-induced killing, but the size of the amplified fragment was critical to differentiate between live and dead bacteria.
Resumo:
Streptococcus pneumoniae remains an important cause of bacteremia worldwide. Last years, a decrease of S. pneumoniae penicillin-resistant isolates has been observed. The objective of this study was to describe the episodes of bacteremia due to S. pneumoniae during a period of 11 years. Epidemiological and clinical data, serotypes causing bacteremia, antibiotic susceptibility and prognosis factors were studied. Over a period of 11 years, all the episodes of S. pneumoniae bacteremia were analysed. Their clinical and microbiological features were recorded. Statistical analysis was carried out to determine risk factors for pneumococcal bacteremia and predictors of fatal outcome. Finally, 67 S. pneumoniae bacteremia episodes were included in this study. The majority of cases were produced in white men in the middle age of their life. The main predisposing factors observed were smoking, antimicrobial and/or corticosteroids administration, chronic pulmonary obstructive disease and HIV infection, and the most common source of bacteremia was the low respiratory tract. The main serotypes found were 19A, 1, 14 and 7F. Seventy-seven percent of these isolates were penicillin-susceptible, and the mortality in this serie was really low. Statistical significance was observed between age, sex and race factors and the presence of bacteremia, and there was relationship between the patient’s condition and the outcome. In our study, S. pneumoniae bacteremia is mainly from community-acquired origin mainly caused in men in the median age of the life. 40% of bacteremias were caused by serotypes 19A, 1, 7F and 14. During the period of study the incidence of bacteremia was stable and the mortality rate was very low.
Resumo:
Streptococcus agalactiae isolates are more common among pregnant women, neonates and nonpregnant adults with underlying diseases compared to other demographic groups. In this study, we evaluate the genetic and phenotypic diversity in S. agalactiae strains from Rio de Janeiro (RJ) that were isolated from asymptomatic carriers. We analysed these S. agalactiae strains using pulsed-field gel electrophoresis (PFGE), serotyping and antimicrobial susceptibility testing, as well as by determining the macrolide resistance phenotype, and detecting the presence of the ermA/B, mefA/E and lnuB genes. The serotypes Ia, II, III and V were the most prevalent serotypes observed. The 60 strains analysed were susceptible to penicillin, vancomycin and levofloxacin. Resistance to clindamycin, chloramphenicol, erythromycin, rifampin and tetracycline was observed. Among the erythromycin and/or clindamycin resistant strains, the ermA, ermB and mefA/E genes were detected and the constitutive macrolides, lincosamides and streptogramin B-type resistance was the most prevalent phenotype observed. The lnuB gene was not detected in any of the strains studied. We found 56 PFGE electrophoretic profiles and only 22 of them were allocated in polymorphism patterns. This work presents data on the genetic diversity and prevalent capsular serotypes among RJ isolates. Approximately 85% of these strains came from pregnant women; therefore, these data may be helpful in developing future prophylaxis and treatment strategies for neonatal syndromes in RJ.
Resumo:
The recommendations for the treatment of gonorrhea have been changed: ceftriaxone 500 mg IM plus azithromycin 1 g PO is recommended. Prophylaxis of recurrent cellulitis with penicillin 250 mg 2 x/d PO may be considered. E. coli ESBL does not require contact isolation anymore. Fecal transplantation seems so far to be the most effective treatment of recurrent C. dificile. Two new respiratory viruses, Middle East Coronavirus (MERS-CoV) and avian-origin Influenza A (H7N9) have been reported. Oral valganciclovir treatment reduces the risk of hearing loss in congenital CMV infection. An outbreak of mould infections of the central nervous system has been described in the United States following injection of contaminated steroids.
Resumo:
BACKGROUND AND AIM The genotype-phenotype interaction in drug-induced liver injury (DILI) is a subject of growing interest. Previous studies have linked amoxicillin-clavulanate (AC) hepatotoxicity susceptibility to specific HLA alleles. In this study we aimed to examine potential associations between HLA class I and II alleles and AC DILI with regards to phenotypic characteristics, severity and time to onset in Spanish AC hepatotoxicity cases. METHODS High resolution genotyping of HLA loci A, B, C, DRB1 and DQB1 was performed in 75 AC DILI cases and 885 controls. RESULTS The distributions of class I alleles A*3002 (P/Pc = 2.6E-6/5E-5, OR 6.7) and B*1801 (P/Pc = 0.008/0.22, OR 2.9) were more frequently found in hepatocellular injury cases compared to controls. In addition, the presence of the class II allele combination DRB1*1501-DQB1*0602 (P/Pc = 5.1E-4/0.014, OR 3.0) was significantly increased in cholestatic/mixed cases. The A*3002 and/or B*1801 carriers were found to be younger (54 vs 65 years, P = 0.019) and were more frequently hospitalized than the DRB1*1501-DQB1*0602 carriers. No additional alleles outside those associated with liver injury patterns were found to affect potential severity as measured by Hy's Law criteria. The phenotype frequencies of B*1801 (P/Pc = 0.015/0.42, OR 5.2) and DRB1*0301-DQB1*0201 (P/Pc = 0.0026/0.07, OR 15) were increased in AC DILI cases with delayed onset compared to those corresponding to patients without delayed onset, while the opposite applied to DRB1*1302-DQB1*0604 (P/Pc = 0.005/0.13, OR 0.07). CONCLUSIONS HLA class I and II alleles influence the AC DILI signature with regards to phenotypic expression, latency presentation and severity in Spanish patients.
Resumo:
Amoxicillin, a low-molecular-weight compound, is able to interact with dendritic cells inducing semi-maturation in vitro. Specific antigens and TLR ligands can synergistically interact with dendritic cells (DC), leading to complete maturation and more efficient T-cell stimulation. The aim of the study was to evaluate the synergistic effect of amoxicillin and the TLR2, 4 and 7/8 agonists (PAM, LPS and R848, respectively) in TLR expression, DC maturation and specific T-cell response in patients with delayed-type hypersensitivity (DTH) reactions to amoxicillin. Monocyte-derived DC from 15 patients with DTH to amoxicillin and 15 controls were cultured with amoxicillin in the presence or absence of TLR2, 4 and 7/8 agonists (PAM, LPS and R848, respectively). We studied TLR1-9 gene expression by RT-qPCR, and DC maturation, lymphocyte proliferation and cytokine production by flow cytometry. DC from both patients and controls expressed all TLRs except TLR9. The amoxicillin plus TLR2/4 or TLR7/8 ligands showed significant differences, mainly in patients: AX+PAM+LPS induced a decrease in TLR2 and AX+R848 in TLR2, 4, 7 and 8 mRNA levels. AX+PAM+LPS significantly increased the percentage of maturation in patients (75%) vs. controls (40%) (p=0.036) and T-cell proliferation (80.7% vs. 27.3% of cases; p=0.001). Moreover, the combinations AX+PAM+LPS and AX+R848 produced a significant increase in IL-12p70 during both DC maturation and T-cell proliferation. These results indicate that in amoxicillin-induced maculopapular exanthema, the presence of different TLR agonists could be critical for the induction of the innate and adaptive immune responses and this should be taken into account when evaluating allergic reactions to these drugs.
Resumo:
RESUME Staphylococcus aureus est un important pathogène à gram-positif, à la fois responsable d'infections nosocomiales et communautaires. Le S. aureus résistant à la méthicilline est intrinsèquement résistant aux bêta-lactamines, inhibiteurs de la synthèse de la paroi bactérienne, grâce à une enzyme nouvellement acquise, la protéine liant la pénicilline 2A, caractérisée par une faible affinité pour ces agents et pouvant poursuivre la synthèse de la paroi, alors que les autres enzymes sont bloquées. Ce micro-organisme a également développé des résistances contre quasiment tous les antibiotiques couramment utilisés en clinique. Parallèlement au développement de molécules entièrement nouvelles, il peut être utile d'explorer d'éventuelles caractéristiques inattendues de médicaments déjà existants, par exemple en les combinant, dans l'espoir d'un potentiel effet synergique. Comprendre les mécanismes de tels effets synergiques pourrait contribuer à la justification de leur utilisation clinique potentielle. Récemment, un effet synergique contre le S. aureus résistant à la méthicilline a été décrit entre la streptogramine quinupristine-datfopristine et les bêta-lactamines, aussi bien in vitro qu'in vivo. Le présent travail a pour but de proposer un modèle pour le mécanisme de cette interaction positive et de l'étendre à d'autres classes d'antibiotiques. Premièrement, un certain nombre de méthodes microbiologiques ont permis de mieux cerner la nature de cette interaction, en montrant qu'elle agissait spécifiquement sur le S. aureus résistant à la méthicilline et qu'elle était restreinte à l'association entre inhibiteurs de la synthèse des protéines et bêta-lactamines. Deuxièmement, L'observation de l'influence des inhibiteurs de la synthèse des protéines sur la machinerie de la paroi bactérienne, c'est-à-dire sur l'expression des protéines liant la pénicilline, responsables de la synthèse du peptidoglycan, a montré une diminution de la quantité de ta protéine liant la pénicilline 2, connue pour posséder une activité de transglycosylation, indispensable au bon fonctionnement de la protéine liant la pénicilline 2A, responsable de la résistance à la méthicilline. Troisièmement, l'analyse fine de la composition du peptidoglycan extrait de bactéries, avant ou après traitement par des inhibiteurs de la synthèse des protéines, a montré des altérations corrélant avec leur capacité à agir en synergie avec les bêta-lactamines contre S. aureus résistant à ta méthicilline. Ces altérations dans les muropeptides pourraient représenter une signature de la diminution de la quantité de la protéine liant la pénicilline 2. Le modèle mécanistique retenu considère que les inhibiteurs de la synthèse des protéines pourraient diminuer l'expression de la protéine Liant la pénicilline 2, indispensable à la résistance à la méthiciltine, et que ce déséquilibre dans les enzymes synthétisant la paroi bactérienne pourrait générer une signature dans les muropeptides. SUMMARY Staphylococcus aureus is a major gram-positive pathogen causing both hospital-acquired and community-acquired infections. Methicillin- resistant Staphylococcus aureus is intrinsically resistant to the cell wall inhibitors beta-lactams by virtue of a newly acquired cell-wall-building enzyme, tow-affinity penicillin-binding protein 2A, which can build the wall when other penicillin-binding proteins are blocked. Moreover, the microorganism has developed resistance to virtually all non-experimental antibiotics. In addition of producing entirely new molecules, it is useful to explore unexpected features of existing drugs, for example by using them in combination, expecting drug synergisms. Understanding the mechanisms of such synergisms would help justify their putative clinical utilization. Recently, a synergism between the streptogramin quinupristin-dalfopristin and beta-lactams was reported against methicillin-resistant S. aureus, both in vitro and in vivo. The present work intends to propose a model for the mechanism of this positive interaction and to extend it to other drug classes. First, microbiological experimentation helped better defining the nature of this interaction, restricting it to methicillin-resistant S. aureus, and to the association of protein synthesis inhibitors with beta-lactams. Second, the observation of inhibitors of protein synthesis influence on the cell-wall-building machinery, i.e. on the expression of penicillin-binding proteins responsible for peptidoglycan synthesis, showed a decrease in the amount of penicillin-binding protein 2, known to provide a transglycosylase activity for glycan chain elongation, indispensable for the functionality of the low-affinity penicillin-binding protein 2A responsible for methicillin resistance. Third, the fine analysis of the peptidoglycan composition purified from bacteria before or after treatment with inhibitors of protein synthesis showed alterations that correlated with their ability to synergize with beta-lactams against methicillin-resistant S. aureus. These muropeptide alterations could be the signature of decrease in the amount of penicillin-binding protein 2. The retained mechanistic model is that inhibitors of protein synthesis could decrease the expression of penicillin-binding protein 2, wich is indispensable for methicillin-resistance, and that this imbalance in cell-wall-building enzymes could generate a muropeptide signature.
Resumo:
Purpose: HIV-infected patients treated for syphilis may be at increased risk for serological failure and serofast state. Our aim was to analyse serological response to treatment in HIV-infected patients diagnosed with syphilis, and factors associated with serological cure and serofast state. Methods: Open-label, no controlled study of a series of HIV- patients diagnosed with syphilis during 2004-2011. Patients were categorized by rapid plasma reagin titer (RPR) into success (4-fold decrease in RPR by 12 or 24 months after treatment of early or late syphilis), serofast (success with persistently stable reactive RPR), and failure/ re-infection ( failure to decrease 4-fold in RPR by 12 or 24 months after treatment or sustained 4-fold increase in RPR after treatment response). Results: 141 HIV- patients were diagnosed with syphilis during the study period (104 early syphilis, 36 late or indeterminate latent syphilis). The mean age was 36.3 years, 98.5% were male, and 87.2% homosexual men. In 46 (32.6%) cases, HIV and syphilis infection diagnosis were coincident (mean CD4 457/mm3 and HIV-VL 4.72 log10). Among patients with prior known HIV infection, 65 were on antiretroviral therapy (ART) at syphilis diagnosis (mean CD4 469/ mm3, 76.9% undetectable HIV-VL). 116 patients satisfied criteria for serological response analysis (89 early, 24 late/indeterminate). At 12 months of early syphilis treatment (89.2% penicillin) there were 16 (18%) failures, and at 24 months of late/indeterminate syphilis (91.7% penicillin) there were 5 (18.5%) failures. Overall, 36 (31.0%) patients presented serofast state. Treatment failure was related with lower CD4 count (295 vs 510/μL; p=0.045) only in patients with coincident diagnosis. Serofast state was related with older age (41 vs 36 years; p=0.024), and lower CD4 count (391 vs 513/mm3; p=0.026). Conclusions: In this series of HIV-infected patients, with many patients on ART and with good immunological and virological parameters, serological failure and serofast state were frequent. Immunological status, and age could influence on serological response to syphilis treatment in HIV-infected patients.
Resumo:
Methicillin-resistant Staphylococcus aureus (MRSA) is one of the most important bacterial pathogens based on its incidence and the severity of its associated infections. In addition, severe MRSA infections can occur in hospitalised patients or healthy individuals from the community. Studies have shown the infiltration of MRSA isolates of community origin into hospitals and variants of hospital-associated MRSA have caused infections in the community. These rapid epidemiological changes represent a challenge for the molecular characterisation of such bacteria as a hospital or community-acquired pathogen. To efficiently control the spread of MRSA, it is important to promptly detect the mecA gene, which is the determinant of methicillin resistance, using a polymerase chain reaction-based test or other rapidly and accurate methods that detect the mecA product penicillin-binding protein (PBP)2a or PBP2’. The recent emergence of MRSA isolates that harbour a mecA allotype, i.e., the mecC gene, infecting animals and humans has raised an additional and significant issue regarding MRSA laboratory detection. Antimicrobial drugs for MRSA therapy are becoming depleted and vancomycin is still the main choice in many cases. In this review, we present an overview of MRSA infections in community and healthcare settings with focus on recent changes in the global epidemiology, with special reference to the MRSA picture in Brazil.
Resumo:
Escherichia coli is commonly involved in infections with a heavy bacterial burden. Piperacillin-tazobactam and carbapenems are among the recommended empirical treatments for health care-associated complicated intra-abdominal infections. In contrast to amoxicillin-clavulanate, both have reduced in vitro activity in the presence of high concentrations of extended-spectrum β-lactamase (ESBL)-producing and non-ESBL-producing E. coli bacteria. Our goal was to compare the efficacy of these antimicrobials against different concentrations of two clinical E. coli strains, one an ESBL-producer and the other a non-ESBL-producer, in a murine sepsis model. An experimental sepsis model {~5.5 log10 CFU/g [low inoculum concentration (LI)] or ~7.5 log(10) CFU/g [high inoculum concentration (HI)]} using E. coli strains ATCC 25922 (non-ESBL producer) and Ec1062 (CTX-M-14 producer), which are susceptible to the three antimicrobials, was used. Amoxicillin-clavulanate (50/12.5 mg/kg given intramuscularly [i.m.]), piperacillin-tazobactam (25/3.125 mg/kg given intraperitoneally [i.p.]), and imipenem (30 mg/kg i.m.) were used. Piperacillin-tazobactam and imipenem reduced spleen ATCC 25922 strain concentrations (-2.53 and -2.14 log10 CFU/g [P < 0.05, respectively]) in the HI versus LI groups, while amoxicillin-clavulanate maintained its efficacy (-1.01 log10 CFU/g [no statistically significant difference]). Regarding the Ec1062 strain, the antimicrobials showed lower efficacy in the HI than in the LI groups: -0.73, -1.89, and -1.62 log10 CFU/g (P < 0.05, for piperacillin-tazobactam, imipenem, and amoxicillin-clavulanate, respectively, although imipenem and amoxicillin-clavulanate were more efficacious than piperacillin-tazobactam). An adapted imipenem treatment (based on the time for which the serum drug concentration remained above the MIC obtained with a HI of the ATCC 25922 strain) improved its efficacy to -1.67 log10 CFU/g (P < 0.05). These results suggest that amoxicillin-clavulanate could be an alternative to imipenem treatment of infections caused by ESBL- and non-ESBL-producing E. coli strains in patients with therapeutic failure with piperacillin-tazobactam.
Resumo:
Streptococcus pyogenes is responsible for a variety of infectious diseases and immunological complications. In this study, 91 isolates of S. pyogenes recovered from oropharynx secretions were submitted to antimicrobial susceptibility testing, emm typing and pulsed-field gel electrophoresis (PFGE) analysis. All isolates were susceptible to ceftriaxone, levofloxacin, penicillin G and vancomycin. Resistance to erythromycin and clindamycin was 15.4%, which is higher than previous reports from this area, while 20.9% of the isolates were not susceptible to tetracycline. The macrolide resistance phenotypes were cMLSB (10) and iMLSB (4). The ermB gene was predominant, followed by the ermA gene. Thirty-two emm types and subtypes were found, but five (emm1, emm4, emm12, emm22, emm81) were detected in 48% of the isolates. Three new emm subtypes were identified (emm1.74, emm58.14, emm76.7). There was a strong association between emm type and PFGE clustering. A variety of PFGE profiles as well as emm types were found among tetracycline and erythromycin-resistant isolates, demonstrating that antimicrobial resistant strains do not result from the expansion of one or a few clones. This study provides epidemiological data that contribute to the development of suitable strategies for the prevention and treatment of such infections in a poorly studied area.
Resumo:
Allergic reactions towards β-lactam antibiotics pose an important clinical problem. The ability of small molecules, such as a β-lactams, to bind covalently to proteins, in a process known as haptenation, is considered necessary for induction of a specific immunological response. Identification of the proteins modified by β-lactams and elucidation of the relevance of this process in allergic reactions requires sensitive tools. Here we describe the preparation and characterization of a biotinylated amoxicillin analog (AX-B) as a tool for the study of protein haptenation by amoxicillin (AX). AX-B, obtained by the inclusion of a biotin moiety at the lateral chain of AX, showed a chemical reactivity identical to AX. Covalent modification of proteins by AX-B was reduced by excess AX and vice versa, suggesting competition for binding to the same targets. From an immunological point of view, AX and AX-B behaved similarly in RAST inhibition studies with sera of patients with non-selective allergy towards β-lactams, whereas, as expected, competition by AX-B was poorer with sera of AX-selective patients, which recognize AX lateral chain. Use of AX-B followed by biotin detection allowed the observation of human serum albumin (HSA) modification by concentrations 100-fold lower that when using AX followed by immunological detection. Incubation of human serum with AX-B led to the haptenation of all of the previously identified major AX targets. In addition, some new targets could be detected. Interestingly, AX-B allowed the detection of intracellular protein adducts, which showed a cell type-specific pattern. This opens the possibility of following the formation and fate of AX-B adducts in cells. Thus, AX-B may constitute a valuable tool for the identification of AX targets with high sensitivity as well as for the elucidation of the mechanisms involved in allergy towards β-lactams.
Resumo:
We investigated the impact of the piperacillin-tazobactam MIC in the outcome of 39 bloodstream infections due to extended-spectrum-β-lactamase-producing Escherichia coli. All 11 patients with urinary tract infections survived, irrespective of the MIC. For other sources, 30-day mortality was lower for isolates with a MIC of ≤ 2 mg/liter than for isolates with a higher MIC (0% versus 41.1%; P = 0.02).
Resumo:
In 1875, 7 years prior to the description of the Koch bacillus, Klebs visualized the first Streptococcus pneumoniae in a pleural fluid. Since then, this organism has played a determinant role in biomedical science. From a biological point of view, it was largely implicated in the development of passive and active immunization by serotherapy and vaccination, respectively. Genetic transformation was also first observed in S. pneumoniae, leading to the discovery of DNA. From a clinical point of view, S. pneumoniae is still today a prime cause of otitis media in children and of pneumonia in all age groups, as well as a predominant cause of meningitis and bacteremia. In adults, bacteremia is still entailed with a mortality of over 25%. Although S. pneumoniae remained very sensitive to penicillin for many years, penicillin-resistance has emerged and increased dramatically over the last 15 years. During this period of time, the frequency of penicillin-resistant isolates has increased from < or = 1% to frequencies varying from 20 to 60% in geographic areas as diverse as South Africa, Spain, France, Hungary, Iceland, Alaska, and numerous regions of the United States and South America. In Switzerland, the current frequency of penicillin-resistant pneumococci ranges between 5 and > or = 10%. The increase in penicillin-resistant pneumococci correlates with the intensive use of beta-lactam antibiotics. The mechanism of resistance is not due to bacterial production of penicillinase, but to an alteration of the bacterial target of penicillin, the so-called penicillin-binding proteins. Resistance is subdivided into (i) inter mediate level resistance (minimal inhibitory concentration [MIC] of penicillin of 0.1-1 mg/L) and (ii) high level resistance (MCI > or = 2 mg/L). The clinical significance of intermediate resistance remains poorly defined. On the other hand, highly resistant strains were responsible for numerous therapeutical failures, especially in cases of meningitis. Antibiotics recommended against penicillin-resistant pneumococci include cefotaxime, ceftriaxone, imipenem and in some instances vancomycin. However, penicillin-resistant pneumococci tend to present cross-resistances to all the antibotics of the beta-lactam family and could even become resistant to the last resort drugs mentioned above. Thus, in conclusion, the explosion of resistance to penicillin in pneumococci is a ubiquitous phenomenon which must be fought against by (i) a strict utilization of antibiotics, (ii) the practice of microbiological sampling of infected foci before treatment, (iii) the systematic surveillance of resistance profiles of pneumococci against antibiotics and (iv) the adequate vaccination of populations at risk.
Resumo:
Quinupristin-dalfopristin (Q-D) synergizes with cefepime for the treatment of methicillin-resistant Staphylococcus aureus (MRSA). Here, we studied whether the synergism was restricted to MRSA and if it extended to non-beta-lactam cell wall inhibitors or to other inhibitors of protein synthesis. Three MRSA and two methicillin-susceptible S. aureus (MSSA) strains were tested, including an isogenic pair of mecA (-)/mecA (+) S. aureus Newman. The drug interactions were determined by fractional inhibitory concentration (FIC) indices and population analysis profiles. The antibacterial drugs that we used included beta-lactam (cefepime) and non-beta-lactam cell wall inhibitors (D-cycloserine, fosfomycin, vancomycin, teicoplanin), inhibitors of protein synthesis (Q-D, erythromycin, chloramphenicol, tetracycline, linezolid, fusidic acid), and polynucleotide inhibitors (cotrimoxazole, ciprofloxacin). The addition of each protein inhibitor to cefepime was synergistic (FIC ≤ 0.5) or additive (FIC > 0.5 but < 1) against MRSA, but mostly indifferent against MSSA (FIC ≥ 1 but ≤ 4). This segregation was not observed after adding cotrimoxazole or ciprofloxacin to cefepime. Population analysis profiles were performed on plates in the presence of increasing concentrations of the cell wall inhibitors plus 0.25 × minimum inhibitory concentration (MIC) of Q-D. Cefepime combined with Q-D was synergistic against MRSA, but D-cycloserine and glycopeptides were not. Thus, the synergism was specific to beta-lactam antibiotics. Moreover, the synergism was not lost against fem mutants, indicating that it acted at another level. The restriction of the beneficial effect to MRSA suggests that the functionality of penicillin-binding protein 2A (PBP2A) was affected, either directly or indirectly. Further studies are necessary in order to provide a mechanism for this positive interaction.