981 resultados para particle physical characterisation
Resumo:
We present three measurements of the top-quark mass in the lepton plus jets channel with approximately 1.9 fb-1 of integrated luminosity collected with the CDF II detector using quantities with minimal dependence on the jet energy scale. One measurement exploits the transverse decay length of b-tagged jets to determine a top-quark mass of 166.9+9.5-8.5 (stat) +/- 2.9 (syst) GeV/c2, and another the transverse momentum of electrons and muons from W-boson decays to determine a top-quark mass of 173.5+8.8-8.9 (stat) +/- 3.8 (syst) GeV/c2. These quantities are combined in a third, simultaneous mass measurement to determine a top-quark mass of 170.7 +/- 6.3 (stat) +/- 2.6 (syst) GeV/c2.
Resumo:
We report a set of measurements of particle production in inelastic pbar{p} collisions collected with a minimum-bias trigger at the Tevatron Collider with the CDF II experiment. The inclusive charged particle transverse momentum differential cross section is measured, with improved precision, over a range about ten times wider than in previous measurements. The former modeling of the spectrum appears to be incompatible with the high particle momenta observed. The dependence of the charged particle transverse momentum on the event particle multiplicity is analyzed to study the various components of hadron interactions. This is one of the observable variables most poorly reproduced by the available Monte Carlo generators. A first measurement of the event transverse energy sum differential cross section is also reported. A comparison with a Pythia prediction at the hadron level is performed. The inclusive charged particle differential production cross section is fairly well reproduced only in the transverse momentum range available from previous measurements. At higher momentum the agreement is poor. The transverse energy sum is poorly reproduced over the whole spectrum. The dependence of the charged particle transverse momentum on the particle multiplicity needs the introduction of more sophisticated particle production mechanisms, such as multiple parton interactions, in order to be better explained.
Resumo:
We report a set of measurements of particle production in inelastic pbar{p} collisions collected with a minimum-bias trigger at the Tevatron Collider with the CDF II experiment. The inclusive charged particle transverse momentum differential cross section is measured, with improved precision, over a range about ten times wider than in previous measurements. The former modeling of the spectrum appears to be incompatible with the high particle momenta observed. The dependence of the charged particle transverse momentum on the event particle multiplicity is analyzed to study the various components of hadron interactions. This is one of the observable variables most poorly reproduced by the available Monte Carlo generators. A first measurement of the event transverse energy sum differential cross section is also reported. A comparison with a Pythia prediction at the hadron level is performed. The inclusive charged particle differential production cross section is fairly well reproduced only in the transverse momentum range available from previous measurements. At higher momentum the agreement is poor. The transverse energy sum is poorly reproduced over the whole spectrum. The dependence of the charged particle transverse momentum on the particle multiplicity needs the introduction of more sophisticated particle production mechanisms, such as multiple parton interactions, in order to be better explained.
Resumo:
Type 1 diabetes is associated with the risk for late diabetic complications which are divided into microvascular (retinopathy, nephropathy, and neuropathy) and macrovascular (cardiovascular disease, CVD) diseases. The risk for diabetic complication can be reduced by effective treatment, most importantly the glycaemic control. Glycaemia in type 1 diabetes is influenced by the interplay between insulin injections and lifestyle factors such as physical activity and diet. The effect of physical activity in patients with type 1 diabetes is not well known, however. The aim of this thesis was to investigate the physical activity and the physical fitness of patients with type 1 diabetes with special emphasis on glycaemic control and the diabetic complications. The patients included in the study were all part of the nationwide, multicenter Finnish Diabetic Nephropathy (FinnDiane) Study which aims to characterise genetic, clinical, and environmental factors that predispose to diabetic complications in patients with type 1 diabetes. In addition, subjects from the IDentification of EArly mechanisms in the pathogenesis of diabetic Late complications (IDEAL) Study were studied. Physical activity was assessed in the FinnDiane Study in 1945 patients by a validated questionnaire. Physical fitness was measured in the IDEAL Study by spiroergometry (cycle test with measurement of respiratory gases) in 86 young adults with type 1 diabetes and in 27 healthy controls. All patients underwent thorough clinical characterisation of their diabetic complication status. Four substudies were cross-sectional using baseline data and one study additionally used follow-up data. Physical activity, especially the intensity of activities, was reduced in patients affected by diabetic nephropathy, retinopathy, and CVD. Low physical activity was associated with poor glycaemic control, a finding most clear in women and evident also in patients with no signs of diabetic complications. Furthermore, low physical activity was associated with a higher HbA1c variability, which in turn was associated with the progression of renal disease and CVD during follow-up. A higher level of physical activity was also associated with better insulin sensitivity. The prevalence of the metabolic syndrome in type 1 diabetes was also lower the higher the physical activity. The aerobic physical fitness level of young adults with type 1 diabetes was reduced compared with healthy peers and in men an association between higher fitness level and lower HbA1c was observed. In patients with type 1 diabetes, a higher physical activity was associated with better glycaemic control and may thus be beneficial with respect to the prevention of diabetic complications.
Resumo:
QUITE OFTEN, metal ions profoundly affect the condensation of carbonyl compounds with primary amines to form Schiff bases as well as their subsequent reactions[I-4]. Condensation of benzaldehyde with o-phenylenediamine (opd) in glacial acetic acid[5] or in absolute alcohol[6] gives benzimidazole derivative, 1-benzyl-2-phenylbenzimidazole (bpbi). In this reaction, the Schiff base N,N'-dibenzylidene-o-phenylenedianfme (dbpd) has been postulated as an intermediate, which cyclises to give bpbi. It was found that the reaction of opd in presence of copperO1) perchlorate with benzaldehyde gave dbpd complex of copper(l) perchlorate instead of bpbi.
Resumo:
We present three measurements of the top-quark mass in the lepton plus jets channel with approximately 1.9 fb-1 of integrated luminosity collected with the CDF II detector using quantities with minimal dependence on the jet energy scale. One measurement exploits the transverse decay length of b-tagged jets to determine a top-quark mass of 166.9+9.5-8.5 (stat) +/- 2.9 (syst) GeV/c2, and another the transverse momentum of electrons and muons from W-boson decays to determine a top-quark mass of 173.5+8.8-8.9 (stat) +/- 3.8 (syst) GeV/c2. These quantities are combined in a third, simultaneous mass measurement to determine a top-quark mass of 170.7 +/- 6.3 (stat) +/- 2.6 (syst) GeV/c2.
Resumo:
The role of oxide surface chemical composition and solvent on ion solvation and ion transport of ``soggy sand'' electrolytes are discussed here. A ``soggy sand'' electrolyte system comprising dispersions of hydrophilic/hydrophobic functionalized aerosil silica in lithium perchlorate methoxy polyethylene glycol solution was employed for the study. Static and dynamic rheology measurements show formation of an attractive particle network in the case of the composite with unmodified aerosil silica (i.e., with surface silanol groups) as well as composites with hydrophobic alkane groups. While particle network in the composite with hydrophilic aerosil silica (unmodified) were due to hydrogen bonding, hydrophobic aerosil silica particles were held together via van der Waals forces. The network strength in the latter case (i.e., for hydrophobic composites) were weaker compared with the composite with unmodified aerosil silica. Both unmodified silica as well as hydrophobic silica composites displayed solid-like mechanical strength. No enhancement in ionic conductivity compared to the liquid electrolyte was observed in the case of the unmodified silica. This was attributed to the existence of a very strong particle network, which led to the ``expulsion'' of all conducting entities from the interfacial region between adjacent particles. The ionic conductivity for composites with hydrophobic aerosil particles displayed ionic conductivity dependent on the size of the hydrophobic chemical moiety. No spanning attractive particle network was observed for aerosil particles with surfaces modified with stronger hydrophilic groups (than silanol). The composite resembled a sol, and no percolation in ionic conductivity was observed.
Resumo:
We present the result of a search for a massive color-octet vector particle, (e.g. a massive gluon) decaying to a pair of top quarks in proton-antiproton collisions with a center-of-mass energy of 1.96 TeV. This search is based on 1.9 fb$^{-1}$ of data collected using the CDF detector during Run II of the Tevatron at Fermilab. We study $t\bar{t}$ events in the lepton+jets channel with at least one $b$-tagged jet. A massive gluon is characterized by its mass, decay width, and the strength of its coupling to quarks. These parameters are determined according to the observed invariant mass distribution of top quark pairs. We set limits on the massive gluon coupling strength for masses between 400 and 800 GeV$/c^2$ and width-to-mass ratios between 0.05 and 0.50. The coupling strength of the hypothetical massive gluon to quarks is consistent with zero within the explored parameter space.
Resumo:
Atmospheric particles affect the radiation balance of the Earth and thus the climate. New particle formation from nucleation has been observed in diverse atmospheric conditions but the actual formation path is still unknown. The prevailing conditions can be exploited to evaluate proposed formation mechanisms. This study aims to improve our understanding of new particle formation from the view of atmospheric conditions. The role of atmospheric conditions on particle formation was studied by atmospheric measurements, theoretical model simulations and simulations based on observations. Two separate column models were further developed for aerosol and chemical simulations. Model simulations allowed us to expand the study from local conditions to varying conditions in the atmospheric boundary layer, while the long-term measurements described especially characteristic mean conditions associated with new particle formation. The observations show statistically significant difference in meteorological and back-ground aerosol conditions between observed event and non-event days. New particle formation above boreal forest is associated with strong convective activity, low humidity and low condensation sink. The probability of a particle formation event is predicted by an equation formulated for upper boundary layer conditions. The model simulations call into question if kinetic sulphuric acid induced nucleation is the primary particle formation mechanism in the presence of organic vapours. Simultaneously the simulations show that ignoring spatial and temporal variation in new particle formation studies may lead to faulty conclusions. On the other hand, the theoretical simulations indicate that short-scale variations in temperature and humidity unlikely have a significant effect on mean binary water sulphuric acid nucleation rate. The study emphasizes the significance of mixing and fluxes in particle formation studies, especially in the atmospheric boundary layer. The further developed models allow extensive aerosol physical and chemical studies in the future.
Resumo:
Copper(II) hydrazine carboxylate monohydrate, Cu(N2H3COO)2·H2O and chromium (II, III) hydrazine carboxylate hydrates, Cu(N2H3COO)2·H2O and Cu(N2H3COO)2·3H2O have been prepared and characterised by chemical analysis, IR, visible spectra and magnetic measurements. Thermal analysis of the copper complex yields a mixture of copper metal and copper oxide. Chromium complexes on thermal decomposition yield Cr2O3 as residue. Decomposition of chromium(HI) complex under hydrothermal conditions yield CrOOH, a precursor to CrO2.
Resumo:
Perfectly hard particles are those which experience an infinite repulsive force when they overlap, and no force when they do not overlap. In the hard-particle model, the only static state is the isostatic state where the forces between particles are statically determinate. In the flowing state, the interactions between particles are instantaneous because the time of contact approaches zero in the limit of infinite particle stiffness. Here, we discuss the development of a hard particle model for a realistic granular flow down an inclined plane, and examine its utility for predicting the salient features both qualitatively and quantitatively. We first discuss Discrete Element simulations, that even very dense flows of sand or glass beads with volume fraction between 0.5 and 0.58 are in the rapid flow regime, due to the very high particle stiffness. An important length scale in the shear flow of inelastic particles is the `conduction length' delta = (d/(1 - e(2))(1/2)), where d is the particle diameter and e is the coefficient of restitution. When the macroscopic scale h (height of the flowing layer) is larger than the conduction length, the rates of shear production and inelastic dissipation are nearly equal in the bulk of the flow, while the rate of conduction of energy is O((delta/h)(2)) smaller than the rate of dissipation of energy. Energy conduction is important in boundary layers of thickness delta at the top and bottom. The flow in the boundary layer at the top and bottom is examined using asymptotic analysis. We derive an exact relationship showing that the a boundary layer solution exists only if the volume fraction in the bulk decreases as the angle of inclination is increased. In the opposite case, where the volume fraction increases as the angle of inclination is increased, there is no boundary layer solution. The boundary layer theory also provides us with a way of understanding the cessation of flow when at a given angle of inclination when the height of the layer is decreased below a value h(stop), which is a function of the angle of inclination. There is dissipation of energy due to particle collisions in the flow as well as due to particle collisions with the base, and the fraction of energy dissipation in the base increases as the thickness decreases. When the shear production in the flow cannot compensate for the additional energy drawn out of the flow due to the wall collisions, the temperature decreases to zero and the flow stops. Scaling relations can be derived for h(stop) as a function of angle of inclination.
Resumo:
Fine-particle rare-earth-metal zirconates, Ln2Zr2O7, where Ln = La, Ce, Pr, Nd, Sm, Gd and Dy having the pyrochlore structure have been prepared using a novel combustion process. The process employs aqueous solutions of the corresponding rare-earth-metal nitrate, zirconium nitrate and carbohydrazide/urea in the required molar ratio. When the solution is rapidly heated to 350–500 °C it boils, foams and burns autocatalytically to yield voluminous oxides. The formation of single-phase Ln2Zr2O7 has been confirmed by powder X-ray diffraction, infrared and fluorescence spectroscopy. The solid combustion products are fine, having surface areas in the range 6–20 m2 g–1. The cold-pressed Pr2Zr2O7 compact when sintered at 1500 °C, 4 h in air, achieved 99% theoretical density.
Resumo:
Fine particle spinel manganites have been prepared by thermal decomposition of the precursors N2H5M1/3Mn2/3(N2H3COO)3 · H2O (M = Co and Ni) and M1/3 Mn2/3(N2H3COO)2 · 2H2O (M = Mg and Zn), as well as by the combustion of redox mixtures containing M(II) nitrate (M = Mg, Co, Ni, Cu, and Zn), Mn(II) nitrate, and maleic hydrazide (MH) in the required molar ratio. Both the precursor and redox mixtures undergo self-propagating, gas-producing, exothermic reactions once ignited at 250-375°C to yield corresponding manganites in less than 5 min. Formation of single phase products was confirmed by X-ray powder diffraction patterns. The manganites are of submicrometer size and have surface area in the range 20-76 m2/g.
Resumo:
Titanyl hydrazine carboxylate dihydrate, TiO(N2H3COO)2.2H2O, zirconyl hydrazine carboxylate dihydrate, ZrO(N2H3COO)2.2H2O and their solid solution, ZrTiO2(N2H3COO)4.4H2O have been prepared for the first time and investigated as precursors to fine particle TiO2, ZrO2 and ZrTiO4 respectively. Titania(anatase) formed has a very high surface area of 110 m2/g and zirconium titanate showed very low dielectric loss (4 x 10(-4)).