941 resultados para parasite lineages
Resumo:
This paper will document the early scientific observations that kindled my neuroendocrinological interest in pre-eclampsia, a life-threatening disease that affects both mother and baby. My interest in this subject started with the placental origin of melanotrophin activity, moving on, through corticotrophin-releasing factor and its binding protein, to a tachykinin modified specifically in the placenta by phosphocholine, a post-translational moiety normally used by parasites to avoid immune surveillance and rejection. This work may finally have led to an understanding of the identity of the elusive placental factor that, whilst attempting to compensate for the poor implantation of the placenta, causes the many symptoms seen in the mother during pre-eclampsia.
Resumo:
Development of a new species of malacosporean myxozoan (Buddenbrockia allmani n. sp.) in the bryozoan Lophopus crystallinus is described. Early stages, represented by isolated cells or small groups, were observed in the host's body wall or body cavity. Multiplication and rearrangement of cells gave an outer cell layer around a central mass. The outer cells made contact by filopodia and established adherens junctions. Sporoplasmosomes were a notable feature of early stages, but these were lost in subsequent development. Typical malacosporean sacs were formed from these groups by attachment of the inner (luminal) cells by a basal lamina to the outer layer (mural cells). Division of luminal cells gave rise to a population of cells that was liberated into the lumen of the sac. Mitotic spindles in open mitosis and prophase stages of meiosis were observed in luminal cells. Centrioles were absent. Detached luminal cells assembled to form spores with four polar capsules and several valve cells surrounding two sporoplasms with secondary cells. Restoration of sporoplasmosomes occurred in primary sporoplasms. A second type of sac was observed with highly irregular mural cells and stellate luminal cells. A radially striated layer and dense granules in the polar capsule wall, and previous data on 18 rDNA sequences enabled assignment of the species to the genus Buddenbrockia, while specific diagnosis relied on the rDNA data and on sac shape and size.
Resumo:
The hypothesis that the elements of the modern species-rich flora of the Cape Floristic Region (CFR), South Africa, originated more or less simultaneously at the Miocene/Pliocene boundary, in response to the development of a mediterranean climate, has been challenged by numerous molecular dating estimates of Cape floral clades. These studies reveal a more gradual emergence, with the oldest clades originating in the Eocene, but others appearing later, some as recently as the Pliocene. That there are factors which might affect the dates recovered, such as choice of calibration point, analysis method, sampling density and the delimitation of Cape floral clades, suggests a need for further critical evaluation of the age estimates presented to date. In this study, the dates of origin of two Cape floral clades (the legume Crotalarieae p.p. and Podalyrieae) are estimated, constrained by a shared calibration point in a single analysis using an rDNA ITS phylogeny in which 633 taxa are sampled. The results indicate that these two clades arose contemporaneously 44-46 mya, not at the Miocene/Pliocene boundary as had been previously supposed. The contemporaneous origin of these Cape floral clades suggests that additional more inclusive analyses are needed before rejecting the hypothesis that a. single environmental trigger explains the establishment of Cape floral clades. (c) 2007 Elsevier Inc. All rights reserved.
Resumo:
Varroa destructor is a parasitic mite of the Eastern honeybee Apis cerana. Fifty years ago, two distinct evolutionary lineages (Korean and Japanese) invaded the Western honeybee Apis mellifera. This haplo-diploid parasite species reproduces mainly through brother sister matings, a system which largely favors the fixation of new mutations. In a worldwide sample of 225 individuals from 21 locations collected on Western honeybees and analyzed at 19 microsatellite loci, a series of de novo mutations was observed. Using historical data concerning the invasion, this original biological system has been exploited to compare three mutation models with allele size constraints for microsatellite markers: stepwise (SMM) and generalized (GSM) mutation models, and a model with mutation rate increasing exponentially with microsatellite length (ESM). Posterior probabilities of the three models have been estimated for each locus individually using reversible jump Markov Chain Monte Carlo. The relative support of each model varies widely among loci, but the GSM is the only model that always receives at least 9% support, whatever the locus. The analysis also provides robust estimates of mutation parameters for each locus and of the divergence time of the two invasive lineages (67,000 generations with a 90% credibility interval of 35,000-174,000). With an average of 10 generations per year, this divergence time fits with the last post-glacial Korea Japan land separation. (c) 2005 Elsevier Inc. All rights reserved.
Resumo:
The Cape Floristic Region is exceptionally species-rich both for its area and latitude, and this diversity is highly unevenly distributed among genera. The modern flora is hypothesized to result largely from recent (post-Oligocene) speciation, and it has long been speculated that particular species-poor lineages pre-date this burst of speciation. Here, we employ molecular phylogenetic data in combination with fossil calibrations to estimate the minimum duration of Cape occupation by 14 unrelated putative relicts. Estimates vary widely between lineages (7-101 Myr ago), and when compared with the estimated timing of onset of the modern flora's radiation, it is clear that many, but possibly not all, of these lineages pre-date its establishment. Statistical comparisons of diversities with lineage age show that low species diversity of many of the putative relicts results from a lower rate of diversification than in dated Cape radiations. In other putative relicts, however, we cannot reject the possibility that they diversify at the same underlying rate as the radiations, but have been present in the Cape for insufficient time to accumulate higher diversity. Although the extremes in diversity of currently dated Cape lineages fall outside expectations under a underlying diversification rate, sampling of all Cape lineages would be required to reject this null hypothesis.
Resumo:
Over many millions of years of independent evolution, placental, marsupial and monotreme mammals have diverged conspicuously in physiology, life history and reproductive ecology. The differences in life histories are particularly striking. Compared with placentals, marsupials exhibit shorter pregnancy, smaller size of offspring at birth and longer period of lactation in the pouch. Monotremes also exhibit short pregnancy, but incubate embryos in eggs, followed by a long period of post-hatching lactation. Using a large sample of mammalian species, we show that, remarkably, despite their very different life histories, the scaling of production rates is statistically indistinguishable across mammalian lineages. Apparently all mammals are subject to the same fundamental metabolic constraints on productivity, because they share similar body designs, vascular systems and costs of producing new tissue.
Integrated cytokine and metabolic analysis of pathological responses to parasite exposure in rodents
Resumo:
Parasitic infections cause a myriad of responses in their mammalian hosts, on immune as well as on metabolic level. A multiplex panel of cytokines and metabolites derived from four parasite-rodent models, namely, Plasmodium berghei-mouse, Trypanosoma brucei brucei-mouse, Schistosoma mansoni-mouse, and Fasciola hepatica-rat were statistically coanalyzed. 1H NMR spectroscopy and multivariate statistical analysis were used to characterize the urine and plasma metabolite profiles in infected and noninfected animals. Each parasite generated a unique metabolic signature in the host. Plasma cytokine concentrations were obtained using the ‘Meso Scale Discovery’ multi cytokine assay platform. Multivariate data integration methods were subsequently used to elucidate the component of the metabolic signature which is associated with inflammation and to determine specific metabolic correlates with parasite-induced changes in plasma cytokine levels. For example, the relative levels of acetyl glycoproteins extracted from the plasma metabolite profile in the P. berghei-infected mice were statistically correlated with IFN-γ, whereas the same cytokine was anticorrelated with glucose levels. Both the metabolic and the cytokine data showed a similar spatial distribution in principal component analysis scores plots constructed for the combined murine data, with samples from all infected animals clustering according to the parasite species and whereby the protozoan infections (P. berghei and T. b. brucei) grouped separately from the helminth infection (S. mansoni). For S. mansoni, the main infection-responsive cytokines were IL-4 and IL-5, which covaried with lactate, choline, and D-3-hydroxybutyrate. This study demonstrates that the inherently differential immune response to single and multicellular parasites not only manifests in the cytokine expression, but also consequently imprints on the metabolic signature, and calls for in-depth analysis to further explore direct links between immune features and biochemical pathways.
Resumo:
Escherichia coli, the most common cause of bacteraemia in humans in the UK, can also cause serious diseases in animals. However the population structure, virulence and antimicrobial resistance genes of those from extraintestinal organs of livestock animals are poorly characterised. The aims of this study were to investigate the diversity of these isolates from livestock animals and to understand if there was any correlation between the virulence and antimicrobial resistance genes and the genetic backbone of the bacteria and if these isolates were similar to those isolated from humans. Here 39 E. coli isolates from liver (n=31), spleen (n=5) and blood (n=3) of cattle (n=34), sheep (n=3), chicken (n=1) and pig (n=1) were assigned to 19 serogroups with O8 being the most common (n=7), followed by O101, O20 (both n=3) and O153 (n=2). They belong to 29 multi-locus sequence types, 20 clonal complexes with ST23 (n=7), ST10 (n=6), ST117 and ST155 (both n=3) being most common and were distributed among phylogenetic group A (n=16), B1 (n=12), B2 (n=2) and D (n=9). The pattern of a subset of putative virulence genes was different in almost all isolates. No correlation between serogroups, animal hosts, MLST types, virulence and antimicrobial resistance genes was identified. The distributions of clonal complexes and virulence genes were similar to other extraintestinal or commensal E. coli from humans and other animals, suggesting a zoonotic potential. The diverse and various combinations of virulence genes implied that the infections were caused by different mechanisms and infection control will be challenging.
Resumo:
In this report, we describe the morphology and histopathology of Myxobolus salminus n. sp., a parasite of the gill filaments of wild Salminus brasiliensis (dourado) from the Brazilian Pantanal. The small polysporic plasmodia were similar to 100 mu m in diameter and the development was asynchronous. The mature spores were oval to pear shaped and had a smooth wall. The spore measurements were (mean +/- S.D., with range in parentheses): length 10.1 +/- 0.4 mu m (9.6-10.5), width 6.1 +/- 0.4 mu m (5.8-6.6) and thickness 5.0 +/- 0.6 mu m (4.7-5.3). The polar capsules were elongated and of equal size: length 4.6 +/- 0.2 mu m (4.3-4.8) and width 1.7 +/- 0.1 mu m (1.5-1.9). The histological analysis revealed numerous plasmodia in the blood vessels of the gill filaments. The site of parasite development was the wall of the large-caliber blood vessel of the gill filament, with progressive growth towards the lumen, resulting in the obstruction of blood flow, congestion and perivascular edema. The ultrastructural study revealed that the plasmodial wall was composed of two membranes, had numerous pinocytic canals and was in direct contact with the basement membrane of the vessel. The development of the parasite was asynchronous, with mature spores, immature spores and young developmental stages randomly distributed throughout the plasmodium. The prevalence of the parasite was 4.4%. with male and female fish being infected. (C) 2009 Elsevier B.V. All rights reserved.
Resumo:
This work is part of an ongoing investigation into the characteristics of Myxozoan parasites of freshwater fish in Brazil and was carried out using morphology, histopathology and molecular analysis. A new Myxosporea species (Myxobolus cordeiroi) is described infecting the jau catfish (Zungaro jahu). Fifty jau specimens were examined and 78% exhibited plasmodia of the parasite. The plasmodia were white and round, measuring 0.3-2.0 mm in diameter and the development occurred in the gill arch, skin, serosa of the body cavity, urinary bladder and eye. The spores had an oval body and the spore wall was smooth. Partial sequencing of the 18S rDNA gene resulted in a total of 505 bp and the alignment of the sequences obtained from samples in different organs revealed 100% identity. In the phylogenetic analysis, the Myxobolus species clustered into two clades-one primarily parasites of freshwater fish and the other primarily parasites of marine fish. M. cordeiroi n. sp. was clustered in a basal position in the freshwater fish species clade. The histological analysis revealed the parasite in the connective tissue of the different infected sites, thereby exhibiting affinity to this tissue. The plasmodium was surrounded by an outer collagen capsule of fibers with distinct orientation from the adjacent connective tissue and an inner layer composed of delicate collagen fibrils-more precisely reticular fibers. The development of the parasite in the cornea and urinary bladder caused considerable stretching of the epithelium. (C) 2009 Elsevier B.V. All rights reserved.
Resumo:
A new myxosporean species, Henneguya eirasi n. sp., is described parasitizing the gill filaments of Pseudoplatystoma corruscans and Pseudoplatystoma fasciatum (Siluriformes: Pimelodidae) caught in the Patanal Wetland of the state of Mato Grosso, Brazil. The parasite formed white, elongated plasmodia measuring up to 3 mm. Mature spores were ellipsoidal in the frontal view, measuring 37.1 +/- 1.8 mu m in total length, 12.9 +/- 0.8 mu m in body length, 3.4 +/- 0.3 mu m in width, 3.1 +/- 0.1 mu m in thickness and 24.6 +/- 2.2 mu m in the caudal process. Polar capsules were elongated and equal in size, measuring 5.4 +/- 0.5 mu m in length and 0.7 +/- 0.1 mu m in width. Polar filaments had 12-13 coils. Histopathological analysis revealed that the parasite developed in the sub-epithelial connective tissue of the gill filaments and the plasmodia were surrounded by a capsule of host connective tissue. The plasmodia caused slight compression of the adjacent tissues, but no inflammatory response was observed in the infection site. Ultrastructure analysis revealed a single plasmodial wall connected to the ectoplasmic zone through numerous pinocytotic canals. The plasmodial wall exhibited numerous projections and slightly electron-dense material was found in the ectoplasm next to the plasmodial wall, forming a line just below the wall. Partial sequencing of the 18S rDNA gene of H. eirasi n. sp. obtained from P. fasciatum resulted in a total of 1066 bp and this sequence did not match any of the Myxozoa available in the GenBank. Phylogenetic analysis revealed the Henneguya species clustering into clades following the order and family of the host fishes. H. eirasi n. sp. clustered alone in one clade, which was the basal unit for the clade composed of Henneguya species parasites of siluriform ictalurids. The prevalence of the parasite was 17.1% in both fish species examined. Parasite prevalence was not influenced by season, host sex or host size. (C) 2011 Elsevier B.V. All rights reserved.
Resumo:
Phylogenetic analyses of representative species from the five genera of Winteraceae (Drimys, Pseudowintera, Takhtajania, Tasmannia, and Zygogynum s.l.) were performed using ITS nuclear sequences and a combined data-set of ITS + psbA-trnH + rpS16 sequences (sampling of 30 and 15 species, respectively). Indel informativity using simple gap coding or gaps as a fifth character was examined in both data-sets. Parsimony and Bayesian analyses support the monophyly of Drimys, Tasmannia, and Zygogynum s.l., but do not support the monophyly of Belliolum, Zygogynum s.s., and Bubbia. Within Drimys, the combined data-set recovers two subclades. Divergence time estimates suggest that the splitting between Drimys and its sister clade (Pseudowintera + Zygogynum s.l.) occurred around the end of the Cretaceous; in contrast, the divergence between the two subclades within Drimys is more recent (15.5-18.5 MY) and coincides in time with the Andean uplift. Estimates suggest that the earliest divergences within Winteraceae could have predated the first events of Gondwana fragmentation. (C) 2009 Elsevier Inc. All rights reserved.
Resumo:
Plasmodium falciparum, the most important etiological agent of human malaria, is endowed with a highly complex cell cycle that is essential for its successful replication within the host. A number of evidence suggest that changes in parasite Ca(2+) levels occur during the intracellular cycle of the parasites and play a role in modulating its functions within the RBC. However, the molecular identification of Plasmodium receptors linked with calcium signalling and the causal relationship between Ca(2+) increases and parasite functions are still largely mysterious. We here describe that increases in P. falciparum Ca(2+) levels, induced by extracellular ATP, modulate parasite invasion. In particular, we show that addition of ATP leads to an increase of cytosolic Ca(2+) in trophozoites and segmented schizonts. Addition of the compounds KN62 and Ip5I on parasites blocked the ATP-induced rise in [Ca(2+)](c). Besides, the compounds or hydrolysis of ATP with apyrase added in culture drastically reduce RBC infection by parasites, suggesting strongly a role of extracellular ATP during RBC invasion. The use of purinoceptor antagonists Ip5I and KN62 in this study suggests the presence of putative purinoceptor in P. falciparum. In conclusion, we have demonstrated that increases in [Ca(2+)](c) in the malarial parasite P. falciparum by ATP leads to the modulation of its invasion of red blood cells.
Resumo:
IP(3)-dependent Ca(2+) signaling controls a myriad of cellular processes in higher eukaryotes and similar signaling pathways are evolutionarily conserved in Plasmodium, the intracellular parasite that causes malaria. We have reported that isolated, permeabilized Plasmodium chabaudi, releases Ca(2+) upon addition of exogenous IP(3). In the present study, we investigated whether the IP(3) signaling pathway operates in intact Plasmodium falciparum, the major disease-causing human malaria parasite. P. falciparum-infected red blood cells (RBCs) in the trophozoite stage were simultaneously loaded with the Ca(2+) indicator Fluo-4/AM and caged-IP(3). Photolytic release of IP(3) elicited a transient Ca(2+) increase in the cytosol of the intact parasite within the RBC. The intracellular Ca(2+) pools of the parasite were selectively discharged, using thapsigargin to deplete endoplasmic reticulum (ER) Ca(2+) and the antimalarial chloroquine to deplete Ca(2+) from acidocalcisomes. These data show that the ER is the major IP(3)-sensitive Ca(2+) store. Previous work has shown that the human host hormone melatonin regulates P. falciparum cell cycle via a Ca(2+)-dependent pathway. In the present study, we demonstrate that melatonin increases inositol-polyphosphate production in intact intraerythrocytic parasite. Moreover, the Ca(2+) responses to melatonin and uncaging of IP(3) were mutually exclusive in infected RBCs. Taken together these data provide evidence that melatonin activates PLC to generate IP(3) and open ER-localized IP(3)-sensitive Ca(2+) channels in P. falciparum. This receptor signaling pathway is likely to be involved in the regulation and synchronization of parasite cell cycle progression.