912 resultados para pacs: neural computing technologies
Resumo:
We continue the study of spiking neural P systems by considering these computing devices as binary string generators: the set of spike trains of halting computations of a given system constitutes the language generated by that system. Although the "direct" generative capacity of spiking neural P systems is rather restricted (some very simple languages cannot be generated in this framework), regular languages are inverse-morphic images of languages of finite spiking neural P systems, and recursively enumerable languages are projections of inverse-morphic images of languages generated by spiking neural P systems.
Resumo:
When brain mechanism carry out motion integration and segmentation processes that compute unambiguous global motion percepts from ambiguous local motion signals? Consider, for example, a deer running at variable speeds behind forest cover. The forest cover is an occluder that creates apertures through which fragments of the deer's motion signals are intermittently experienced. The brain coherently groups these fragments into a trackable percept of the deer in its trajectory. Form and motion processes are needed to accomplish this using feedforward and feedback interactions both within and across cortical processing streams. All the cortical areas V1, V2, MT, and MST are involved in these interactions. Figure-ground processes in the form stream through V2, such as the seperation of occluding boundaries of the forest cover from the boundaries of the deer, select the motion signals which determine global object motion percepts in the motion stream through MT. Sparse, but unambiguous, feauture tracking signals are amplified before they propogate across position and are intergrated with far more numerous ambiguous motion signals. Figure-ground and integration processes together determine the global percept. A neural model predicts the processing stages that embody these form and motion interactions. Model concepts and data are summarized about motion grouping across apertures in response to a wide variety of displays, and probabilistic decision making in parietal cortex in response to random dot displays.
Resumo:
The aim of this work is to improve retrieval and navigation services on bibliographic data held in digital libraries. This paper presents the design and implementation of OntoBib¸ an ontology-based bibliographic database system that adopts ontology-driven search in its retrieval. The presented work exemplifies how a digital library of bibliographic data can be managed using Semantic Web technologies and how utilizing the domain specific knowledge improves both search efficiency and navigation of web information and document retrieval.
Resumo:
This paper presents innovative work in the development of policy-based autonomic computing. The core of the work is a powerful and flexible policy-expression language AGILE, which facilitates run-time adaptable policy configuration of autonomic systems. AGILE also serves as an integrating platform for other self-management technologies including signal processing, automated trend analysis and utility functions. Each of these technologies has specific advantages and applicability to different types of dynamic adaptation. The AGILE platform enables seamless interoperability of the different technologies to each perform various aspects of self-management within a single application. The various technologies are implemented as object components. Self-management behaviour is specified using the policy language semantics to bind the various components together as required. Since the policy semantics support run-time re-configuration, the self-management architecture is dynamically composable. Additional benefits include the standardisation of the application programmer interface, terminology and semantics, and only a single point of embedding is required.
Resumo:
This paper describes an end-user model for a domestic pervasive computing platform formed by regular home objects. The platform does not rely on pre-planned infrastructure; instead, it exploits objects that are already available in the home and exposes their joint sensing, actuating and computing capabilities to home automation applications. We advocate an incremental process of the platform formation and introduce tangible, object-like artifacts for representing important platform functions. One of those artifacts, the application pill, is a tiny object with a minimal user interface, used to carry the application, as well as to start and stop its execution and provide hints about its operational status. We also emphasize streamlining the user's interaction with the platform. The user engages any UI-capable object of his choice to configure applications, while applications issue notifications and alerts exploiting whichever available objects can be used for that purpose. Finally, the paper briefly describes an actual implementation of the presented end-user model. © (2010) by International Academy, Research, and Industry Association (IARIA).
Resumo:
Embedded memories account for a large fraction of the overall silicon area and power consumption in modern SoC(s). While embedded memories are typically realized with SRAM, alternative solutions, such as embedded dynamic memories (eDRAM), can provide higher density and/or reduced power consumption. One major challenge that impedes the widespread adoption of eDRAM is that they require frequent refreshes potentially reducing the availability of the memory in periods of high activity and also consuming significant amount of power due to such frequent refreshes. Reducing the refresh rate while on one hand can reduce the power overhead, if not performed in a timely manner, can cause some cells to lose their content potentially resulting in memory errors. In this paper, we consider extending the refresh period of gain-cell based dynamic memories beyond the worst-case point of failure, assuming that the resulting errors can be tolerated when the use-cases are in the domain of inherently error-resilient applications. For example, we observe that for various data mining applications, a large number of memory failures can be accepted with tolerable imprecision in output quality. In particular, our results indicate that by allowing as many as 177 errors in a 16 kB memory, the maximum loss in output quality is 11%. We use this failure limit to study the impact of relaxing reliability constraints on memory availability and retention power for different technologies.
Resumo:
Titanium alloy exhibits an excellent combination of bio-compatibility, corrosion resistance, strength and toughness. The microstructure of an alloy influences the properties. The microstructures depend mainly on alloying elements, method of production, mechanical, and thermal treatments. The relationships between these variables and final properties of the alloy are complex, non-linear in nature, which is the biggest hurdle in developing proper correlations between them by conventional methods. So, we developed artificial neural networks (ANN) models for solving these complex phenomena in titanium alloys.
In the present work, ANN models were used for the analysis and prediction of the correlation between the process parameters, the alloying elements, microstructural features, beta transus temperature and mechanical properties in titanium alloys. Sensitivity analysis of trained neural network models were studied which resulted a better understanding of relationships between inputs and outputs. The model predictions and the analysis are well in agreement with the experimental results. The simulation results show that the average output-prediction error by models are less than 5% of the prediction range in more than 95% of the cases, which is quite acceptable for all metallurgical purposes.