989 resultados para orthogonal projections
Resumo:
One major assumption in all orthogonal space-time block coding (O-STBC) schemes is that the channel remains static over the length of the code word. However, time-selective fading channels do exist, and in such case conventional O-STBC detectors can suffer from a large error floor in the high signal-to-noise ratio (SNR) cases. As a sequel to the authors' previous papers on this subject, this paper aims to eliminate the error floor of the H(i)-coded O-STBC system (i = 3 and 4) by employing the techniques of: 1) zero forcing (ZF) and 2) parallel interference cancellation (PIC). It is. shown that for an H(i)-coded system the PIC is a much better choice than the ZF in terms of both performance and computational complexity. Compared with the, conventional H(i) detector, the PIC detector incurs a moderately higher computational complexity, but this can well be justified by the enormous improvement.
Resumo:
Use of orthogonal space-time block codes (STBCs) with multiple transmitters and receivers can improve signal quality. However, in optical intensity modulated signals, output of the transmitter is non-negative and hence standard orthogonal STBC schemes need to be modified. A generalised framework for applying orthogonal STBCs for free-space IM/DD optical links is presented.
Resumo:
Little has so far been reported on the robustness of non-orthogonal space-time block codes (NO-STBCs) over highly correlated channels (HCC). Some of the existing NO-STBCs are indeed weak in robustness against HCC. With a view to overcoming such a limitation, a generalisation of the existing robust NO-STBCs based on a 'matrix Alamouti (MA)' structure is presented.
Resumo:
One major assumption in all orthogonal space-time block coding (O-STBC) schemes is that the channel remains static over the entire length of the codeword. However, time selective fading channels do exist, and in such case the conventional O-STBC detectors can suffer from a large error floor in the high signal-to-noise ratio (SNR) cases. This paper addresses such an issue by introducing a parallel interference cancellation (PIC) based detector for the Gi coded systems (i=3 and 4).
Resumo:
This paper proposes a convenient signaling scheme-orthogonal on-off BPSK (O3BPSK)-for near-far (NF) resistant detection in asynchronous direct-sequence code-division multiple-access (DS/CDMA) systems (uplink). The temporally adjacent bits from different users in the received signals are decoupled by using the on-off signaling, and the original data rate is maintained with no increase in transmission rate by adopting an orthogonal structure. The detector at the receiver is a one-shot linear decorrelating detector, which depends upon neither hard decision nor specific channel coding. The application of O3 strategy to the differentially encoded BPSK (D-BPSK) sequences is also presented. Finally, some computer simulations are shown to confirm the theoretical analysis.
Resumo:
All the orthogonal space-time block coding (O-STBC) schemes are based on the following assumption: the channel remains static over the entire length of the codeword. However, time selective fading channels do exist, and in many cases the conventional O-STBC detectors can suffer from a large error floor in the high signal-to-noise ratio (SNR) cases. This paper addresses such an issue by introducing a parallel interference cancellation (PIC) based detector for the Gi coded systems (i=3 and 4).
Resumo:
Several non-orthogonal space-time block coding (NO-STBC) schemes have recently been proposed to achieve full rate transmission. Some of these schemes, however, suffer from weak robustness: their channel matrices will become ill conditioned in the case of highly correlated channels (HCC). To address this issue, this paper derives a family of robust NO-STBC schemes for four Tx antennas based on the worst case of HCC. These codes turned out to be a superset of Jafarkhani's quasi-orthogonal STBC codes. A computationally affordable linear decoder is also proposed. Although these codes achieve a similar performance to the non-robust schemes under normal channel conditions, they offer a strong robustness against HCC (although possibly yielding a poorer performance). Finally, computer simulations are presented to verify the algorithm design.
Resumo:
The paper deals with an issue in space time block coding (STBC) design. It considers whether, over a time-selective channel, orthogonal STBC (O-STBC) or non-orthogonal STBC (NO-STBC) performs better. It is shown that, under time-selectiveness, once vehicle speed has risen above a certain value, NO-STBC always outperforms O-STBC across the whole SNR range. Also, considering that all existing NO-STBC schemes have been investigated under quasi-static channels only, a new simple receiver is derived for the NO-STBC system under time-selective channels.
Resumo:
A unique parameterization of the perspective projections in all whole-numbered dimensions is reported. The algorithm for generating a perspective transformation from parameters and for recovering parameters from a transformation is a modification of the Givens orthogonalization algorithm. The algorithm for recovering a perspective transformation from a perspective projection is a modification of Roberts' classical algorithm. Both algorithms have been implemented in Pop-11 with call-out to the NAG Fortran libraries. Preliminary monte-carlo tests show that the transformation algorithm is highly accurate, but that the projection algorithm cannot recover magnitude and shear parameters accurately. However, there is reason to believe that the projection algorithm might improve significantly with the use of many corresponding points, or with multiple perspective views of an object. Previous parameterizations of the perspective transformations in the computer graphics and computer vision literature are discussed.
Resumo:
A strong climatic warming is currently observed in the Caucasus mountains, which has profound impact on runoff generation in the glaciated Glavny (Main) Range and on water availability in the whole region. To assess future changes in the hydrological cycle, the output of a general circulation model was downscaled statistically. For the 21st century, a further warming by 4–7 °C and a slight precipitation increase is predicted. Measured and simulated meteorological variables were used as input into a runoff model to transfer climate signals into a hydrological response under both present and future climate forcings. Runoff scenarios for the mid and the end of the 21st century were generated for different steps of deglaciation. The results show a satisfactory model performance for periods with observed runoff. Future water availability strongly depends on the velocity of glacier retreat. In a first phase, a surplus of water will increase flood risk in hot years and after continuing glacier reduction, annual runoff will again approximate current values. However, the seasonal distribution of streamflow will change towards runoff increase in spring and lower flows in summer.