984 resultados para oil absorption
Resumo:
Nowadays Solar Cooling systems are becoming popular to reduce the carbon footprint of air conditioning. The use of an absorption chiller connected to solar thermal panels is increasing, but little study has been carried out to assess the advantage of join together an absorption chiller and a desiccant wheel to remove the sensible heat and the latent heat in different ways than the current design adopted in the industry. In this work I assess the possibility of implement a desiccant wheel in a conventional solar cooling system and the possibility of recovering the heat rejected by the absorption chiller which is then used for the regeneration of the desiccant wheel. The implementation of a desiccant wheel and the recovery of the heat rejected could provide a significant energy saving when compared to traditional solar cooling system. The results assist in the practical development of a solar cooling system which simultaneously uses absorption and adsorption technology.
Resumo:
Statistical comparison of oil samples is an integral part of oil spill identification, which deals with the process of linking an oil spill with its source of origin. In current practice, a frequentist hypothesis test is often used to evaluate evidence in support of a match between a spill and a source sample. As frequentist tests are only able to evaluate evidence against a hypothesis but not in support of it, we argue that this leads to unsound statistical reasoning. Moreover, currently only verbal conclusions on a very coarse scale can be made about the match between two samples, whereas a finer quantitative assessment would often be preferred. To address these issues, we propose a Bayesian predictive approach for evaluating the similarity between the chemical compositions of two oil samples. We derive the underlying statistical model from some basic assumptions on modeling assays in analytical chemistry, and to further facilitate and improve numerical evaluations, we develop analytical expressions for the key elements of Bayesian inference for this model. The approach is illustrated with both simulated and real data and is shown to have appealing properties in comparison with both standard frequentist and Bayesian approaches
Resumo:
Gac fruits were physically measured and stored under ambient conditions for up to 2 weeks to observe changes in carotenoid contents (lycopene and beta carotene) in its aril. Initial concentrations in the aril of lycopene were from 2.378 mg/g fresh weight (FW) to 3.728 mg/g FW and those of beta carotene were from 0.257 to 0.379 mg/g FW. Carotenoid concentrations in the aril remained stable after 1 week but sharply declined after 2 weeks of storage. Gac oil, pressed from gac aril, has similar concentrations of lycopene and beta carotene (2.436 and 2.592 mg/g, respectively). Oil was treated with 0.02% of butylated hydroxytoluene, or with a stream of nitrogen or untreated then stored in the dark for up to 15 or 19 weeks under different temperatures (5 °C, ambient, 45 and 60 °C). Lycopene and beta carotene in control gac oil degraded following the first-order kinetic model. The degradation rate of lycopene and beta carotene in the treated oil samples were lower than that in the control oil but the first-order kinetic was not always followed. However, both lycopene and beta carotene degraded quickly in gac oil with the first-order kinetic under high temperature conditions (45 and 60 °C) regardless of the treatments used. © 2009 Elsevier Ltd. All rights reserved.
Resumo:
The long-term stability of methylammonium lead triiodide (MAPbI3) perovskite in moist environments is a paramount challenge to realise the commercialization of perovskite solar cells. In an attempt to address this concern, we have carried out systematic first-principles studies on the MAPbI3 perovskite with a hydrophobic graphene layer interfaced as a water barrier. We find there is a charge transfer at the graphene/MAPbI3 interface and electrons can be excited from graphene into the perovskite surface, leading to well separated electron–hole pairs, i.e. reduced recombination. By studying the optical properties, we find the hybrid graphene/MAPbI3 nanocomposite displays enhanced light absorption compared with the pristine MAPbI3. Furthermore, from an ab initio molecular dynamics simulation, the graphene/MAPbI3 nanocomposite is confirmed to be able to resist the reaction with water molecules, highlighting a great advantage of this nanocomposite in promoting long-term photovoltaic performance.
Resumo:
The electron spin resonance absorption in the synthetic metal polyaniline (PANI) doped with PTSA and its blend with poly(methylmethacrylate) (PMMA) is investigated in the temperature range between 4.2 and 300 K. The observed line shape follows Dyson's theory for a thick metallic plate with slowly diffusing magnetic dipoles. At low temperatures the line shape become symmetric and Lorentzian when the sample dimensions are small in comparison with the skin depth. The temperature dependence of electron spin relaxation time is discussed. (C) 1999 Elsevier Science Ltd. All rights reserved.
Resumo:
The effect of a one-dimensional field (1) on the self-absorption characteristics and (2) when we have a finite numerical aperture for the objective lens that focuses the laser beam on the solid are considered here. Self-absorption, in particular its manifestation as an inner filter for the emitted signal, has been observed in luminescence experiments. Models for this effect exist and have been analyzed, but only in the absence of space charge. Using our previous results on minority carrier relaxation in the presence of a field, we obtain expressions incorporating inner filter effects. Focusing of a light beam on the sample, by an objective lens, results in a three-dimensional source and consequently a three-dimensional continuity equation to be solved for the minority carrier concentration. Assuming a one-dimensional electric field and employing Fourier-Bessel transforms, we recast the problem of carrier relaxation and solve the same via an identity that relates it to solutions obtained in the absence of focusing effects. The inner filter effect as well as focusing introduces new time scales in the problem of carrier relaxation. The interplay between the electric field and the parameters which characterize these effects and the consequent modulation of the intensity and time scales of carrier decay signals are analyzed and discussed.
Resumo:
The Ozone Monitoring Instrument (OMI) aboard EOS-Aura and the Moderate Resolution Imaging Spectroradiometer (MODIS) onboard EOS-Aqua fly in formation as part of the A-train. Though OMI retrieves aerosol optical depth (AOD) and aerosol absorption, it must assume aerosol layer height. The MODIS cannot retrieve aerosol absorption, but MODIS aerosol retrieval is not sensitive to aerosol layer height and with its smaller pixel size is less affected by subpixel clouds. Here we demonstrate an approach that uses MODIS-retrieved AOD to constrain the OMI retrieval, freeing OMI from making an a priori estimate of aerosol height and allowing a more direct retrieval of aerosol absorption. To predict near-UV optical depths using MODIS data we rely on the spectral curvature of the MODIS-retrieved visible and near-IR spectral AODs. Application of an OMI-MODIS joint retrieval over the north tropical Atlantic shows good agreement between OMI and MODIS-predicted AODs in the UV, which implies that the aerosol height assumed in the OMI-standard algorithm is probably correct. In contrast, over the Arabian Sea, MODIS-predicted AOD deviated from the OMI-standard retrieval, but combined OMI-MODIS retrievals substantially improved information on aerosol layer height (on the basis of validation against airborne lidar measurements). This implies an improvement in the aerosol absorption retrieval, but lack of UV absorption measurements prevents a true validation. Our study demonstrates the potential of multisatellite analysis of A-train data to improve the accuracy of retrieved aerosol products and suggests that a combined OMI-MODIS-CALIPSO retrieval has large potential to further improve assessments of aerosol absorption.
Resumo:
The temperature and frequency dependence of dielectric permittivity and dielectric loss of nanosized Mn1-xZnxFe2O4 (for x = 0, 0.2, 0.4, 0.6, 0.8, 1) were investigated. The impact of zinc substitution on the dielectric properties of the mixed ferrite is elucidated. Strong dielectric dispersion and broad relaxation were exhibited by Mn1-xZnxFe2O4. The variation of dielectric relaxation time with temperature suggests the involvement of multiple relaxation processes. Cole-Cole plots were employed as an effective tool for studying the observed phenomenon. The activation energies were calculated from relaxation peaks and Cole-Cole plots and found to be consistent with each other and indicative of a polaron conduction.
Resumo:
We propose an exactly solvable model for the two-state curve-crossing problem. Our model assumes the coupling to be a delta function. It is used to calculate the effect of curve crossing on the electronic absorption spectrum and the resonance Raman excitation profile.
Resumo:
Nonlinear absorption and refraction phenomena in stoichiometric lithium niobate (SLN) pure and co-doped with Zn and Nd, and congruent lithium niobate (CLN) were investigated using Z-scan technique. Femtosecond laser pulses from Ti:Sapphire laser (800 nm, 110 fs pulse width and 1 kHz repetition rate) were utilized for the experiment. The process responsible for nonlinear behavior of the samples was identified to be three photon absorption (3PA). This is in agreement with the band gap energies of the samples obtained from the linear absorption cut off and the slope of the plot of Ln(1 − TOA) vs. Ln(I0) using Sutherland’s theory (s = 2.1, for 3PA). The nonlinear refractive index (n2) of Zn doped samples was found to be lower than that of pure samples. Our experiments show that there exists a correlation between the nonlinear properties and the stoichiometry of the samples. The values of n2 fall into the same range as those obtained for the materials of similar band gap.
Resumo:
The multiphoton inverse bremsstrahlung absorption of two intense electromagnetic beams passing through a magnetized plasma is studied. The rate of absorption of electromagnetic energy by the electrons is calculated by deriving a kinetic equation for the electrons. It is found that the absorption enhances when the frequency of one electromagnetic beam is more, and that of the other electromagnetic beam is less, than the electron-cyclotron frequency. A possible application to extragalactic radio sources is discussed.
Resumo:
LIII absorption edge measurements clearly delineate 3+ and 4+ states of Ce. Absorption edges of 3+ compounds show a single peak, while those of 4+ compounds show two peaks, both appearing at higher energies than the characteristic peaks of 3+ compounds. In systems where there is interconfigurational fluctuation, features due to both 3+ and 4+ states are distinctly seen.
Resumo:
The aim of this study was to look at the freedom of ordinary people as they construct it. The scope, however, was limited to contemporary Finnish sailors and their freedom discourses. The study belongs to the field of the anthropology of religions, which is part of comparative religion. Worldview, which is one of the key concepts in comparative religion, provided the broader theoretical basis of the study. The data consisted of 92 interviews with Finnish professional seafarers conducted in 1996, 1999, 2000 and 2005, field journals that were written during two periods of fieldwork in 1996 and 1999-2000, and correspondence with some of the seafarers during 1999-2005. The analysis process incorporated new rhetoric and metaphor theory. The thesis is in three parts. The first part discusses the methodological challenges of this type of ethnography, the second an ethnography of modern Finnish shipworld focuses on work, organization, hierarchy and gender, and the third part discusses the freedom concepts of seafarers. It was found that seafarers use two kinds of freedom discourse. The first is in line with the stereotypical Jack Tar, a free-roving sailor who is not bound to land and its mundane routines, and the second views shipworld as freedom from freedom, meaning one is not responsible for one s own actions because one is not free to make a choice. It was also found that seafarers are well aware of the stereotypical images that are attached to their profession: they not only deny them, but also utilize, reflect on and construct them.
Resumo:
In view of its non-toxicity, and good dielectric properties, castor oil, a polar liquid dielectric of vegetable origin is suggested as a possible alternative to PCB's for capacitor applications. In this paper the dielectric properties (including partial discharge behavior), of all-polypropylene and paper-polypropylene capacitors with castor oil as impregnant, are reported. The paper also contains results of life studies conducted under accelerated electrical and thermal stresses when they are occurring both individually and combined. The data obtained have been statistically analyzed and approximate life of the system calculated bylinear extrapolation.