957 resultados para occlusal loads
Resumo:
A power combining strategy for Class-E and inverse Class-E amplifiers operating at high frequencies such that they can operate into unbalanced loads is proposed. This power combining method is particularly important for the inverse Class-E amplifier configuration whose single-stage topology is naturally limited for small-to-medium power applications. Design examples for the power combining synthesis of classical Class-E and then inverse Class-E amplifiers with specification 3 V-1.5 W-2.5 GHz are given. For this specification, it is shown that a three-branch combiner has a natural 50 V output impedance. The resulting circuits are simulated within Agilent Advanced Design Systems environment with good agreement to theoretical prediction. Further the performance of the proposed circuits when operated in a Linear amplification using Nonlinear Components transmitter configuration whereby two-branch amplifiers are driven with constant amplitude conjugate input phase signals is investigated.
Resumo:
This paper presents a new method for calculating the individual generators' shares in line flows, line losses and loads. The method is described and illustrated on active power flows, but it can be applied in the same way to reactive power flows.
Resumo:
Introduction: Our objective was to determine which factors were predictive of good long-term outcomes after fixed appliance treatment of Class II Division 1 malocclusion. Methods: Two hundred seven patients with Class II Division 1 malocclusion were examined in early adulthood at a mean of 4.6 years after treatment with fixed appliances. The peer assessment rating index was used to evaluate dental alignment and occlusal relationships. The soft-tissue profile was assessed with the Holdaway angle. Results: Logistic regression identified 3 pretreatment variables that were predictive of a good facial profile (Holdaway angle) at recall: the lower lip to E-plane distance (P
Resumo:
Quantifying nutrient and sediment loads in catchments is dif?cult owing to diffuse controls related to storm hydrology. Coarse sampling and interpolation methods are prone to very high uncertainties due to under-representation of high discharge, short duration events. Additionally, important low-?ow processes such as diurnal signals linked to point source impacts are missed. Here we demonstrate a solution based on a time-integrated approach to sampling with a standard 24 bottle autosampler con?gured to take a sample every 7 h over a week according to a Plynlimon design. This is evaluated with a number of other sampling strategies using a two-year dataset of sub-hourly discharge and phosphorus concentration data. The 24/7 solution is shown to be among the least uncertain in estimating load (inter-quartile range: 96% to 110% of actual load in year 1 and 97% to 104% in year 2) due to the increased frequency raising the probability of sampling storm events and point source signals. The 24/7 solution would appear to be most parsimonious in terms of data coverage and certainty, process signal representation, potential laboratory commitment, technology requirements and the ability to be widely deployed in complex catchments.
Resumo:
The effect of preparation design and the physical properties of the interface lute on the restored machined ceramic crown-tooth complex are poorly understood. The aim of this work was to determine, by means of three-dimensional finite element analysis (3D FEA) the effect of the tooth preparation design and the elastic modulus of the cement on the stress state of the cemented machined ceramic crown-tooth complex. The three-dimensional structure of human premolar teeth, restored with adhesively cemented machined ceramic crowns, was digitized with a micro-CT scanner. An accurate, high resolution, digital replica model of a restored tooth was created. Two preparation designs, with different occlusal morphologies, were modeled with cements of 3 different elastic moduli. Interactive medical image processing software (mimics and professional CAD modeling software) was used to create sophisticated digital models that included the supporting structures; periodontal ligament and alveolar bone. The generated models were imported into an FEA software program (hypermesh version 10.0, Altair Engineering Inc.) with all degrees of freedom constrained at the outer surface of the supporting cortical bone of the crown-tooth complex. Five different elastic moduli values were given to the adhesive cement interface 1.8 GPa, 4 GPa, 8 GPa, 18.3 GPa and 40 GPa; the four lower values are representative of currently used cementing lutes and 40 GPa is set as an extreme high value. The stress distribution under simulated applied loads was determined. The preparation design demonstrated an effect on the stress state of the restored tooth system. The cement elastic modulus affected the stress state in the cement and dentin structures but not in the crown, the pulp, the periodontal ligament or the cancellous and cortical bone. The results of this study suggest that both the choice of the preparation design and the cement elastic modulus can affect the stress state within the restored crown-tooth complex.
Resumo:
The behaviour of syntactic foam is strongly dependent on temperature and strain rate. This research focuses on the behaviour of syntactic foam made of epoxy and glass microballoons in the glassy, transition and rubbery regions. Both epoxy and epoxy foam are investigated separately under tension and shear loadings in order to study the strain rate and temperature effects. The results indicate that the strength and strain to failure data can be collapsed onto master curves depending on temperature reduced strain rate. The highest strain to failure occurs in the transition zone. The presence of glass microballoons reduces the strain to failure over the entire range considered, an effect that is particularly significant under tensile loading. However, as the microballoons increase the elastic modulus significantly in the rubbery zone but reduce it somewhat in the glassy zone, the effect on the strength is more complicated. Different failure mechanisms are identified over the temperature-frequency range considered. As the temperature reduced strain rate is decreased, the failure mechanism changes from microballoon fracture to matrix fracture and debonding between the matrix and microballoons. © IMechE 2012.
Resumo:
This paper deals with the problem of estimating wave pressure loads acting on Oscillating Wave Surge Converters (OWSC) for assessment of fatigue on their components. Recent wave loading data issued from experimental testing of a 25th scale model of a box-shaped OWSC are here used to review the accuracy of the predictions made by an engineering method previously developed to derive wave pressure loads on OWSCs from experimental data. Predictions are shown underestimate wave pressure loads, and other methods subsequently developed are presented. A simplistic experimental method taking in consideration variations of the wetted surface area of the flap is shown to lead to relatively good estimates of wave pressure loads that could be used for fatigue calculations.