956 resultados para nutrient consumption ratio
Resumo:
In a sediment core from the Pacific sector of the Antarctic Zone (AZ) of the Southern Ocean, we report diatom-bound N isotope (δ15Ndb) records for total recoverable diatoms and two distinct diatom assemblages (pennate and centric rich). These data indicate tight coupling between the degree of nitrate consumption and Antarctic climate across the last two glacial cycles, with δ15Ndb (and thus the degree of nitrate consumption) increasing at each major Antarctic cooling event. Coupled with evidence from opal- and barium-based proxies for reduced export production during ice ages, the δ15Ndb increases point to ice age reductions in the supply of deep ocean-sourced nitrate to the AZ surface. The two diatom assemblages and species abundance data indicate that the δ15Ndb changes are not the result of changing species composition. The pennate and centric assemblage δ15Ndb records indicate similar changes but with a significant decline in their difference during peak ice ages. A tentative seasonality-based interpretation of the centric-to-pennate δ15Ndb difference suggests that late summer surface waters became nitrate free during the peak glacials.
Resumo:
We measured carbon, nitrogen, protein, bacterial and microalgal abundance, and mineral-specific surface area in sediments from the feeding zone of undisturbed Saccoglossus kowalewskyi, as well as in their fresh egesta. Comparison of results using surficial material 1 mm) and the top 3 mm of sediments indicated ingestion of surficial material by the enteropneusts. Assuming the surficial sediment as a food source results in apparent absorption efficiencies of 15% for TOC, 35% for TON, 60% for protein and 86% for microalgae. The C:N ratio of the apparently absorbed material was 4.2, consistent with an amino acid-rich diet. Protein- nitrogen uptake, however, accounted for only about 28% of total nitrogen absorption, indicating a dominant use of non-protein nitrogen . Bacterial and microalgal contributions to dietary nitrogen uptake were no more than 3% and 4% respectively. Active worms maintain 2 foraging areas with an average total foraging volume of 0.9 cm3 and a volume ingestion rate of 0.06 to 0.12 cm3 ind.-1 h-1. If the preferred feeding zone of these enteropneusts is the nitrogen -enriched surficial layer, we estimate that their feeding activities will deplete the available food resources every 8 to 16 h and they may rely on biological and tidal redistribution of surface material.
Resumo:
Children and adults frequently skip breakfast and rates are currently increasing. In addition, the food choices made for breakfast are not always healthy ones. Breakfast skipping, in conjunction with unhealthy breakfast choices, leads to impaired cognitive functioning, poor nutrient intake, and overweight. In response to these public health issues, Skip To Breakfast, a behaviorally based school and family program, was created to increase consistent and healthful breakfast consumption among ethnically diverse fifth grade students and their families, using Intervention Mapping™. Four classroom lessons and four parent newsletters were used to deliver the intervention. For this project, a healthy, "3 Star Breakfast" was promoted, and included a serving each of dairy product, whole grain, and fruit, each with an emphasis on being low in fat and sugar. The goal of this project was to evaluate the feasibility and acceptability of the intervention. A pilot-test of the intervention was conducted in one classroom, in a school in Houston, during the Fall 2007 semester. A qualitative evaluation of the intervention was conducted, which included focus groups with students, phone interviews of parents, process evaluation data from the classroom teacher, and direct observation. Sixteen students and six parents participated in the study. Data were recorded and themes were identified. Initial results showed there is a need for such programs. Based on the initial feedback, edits were made to the intervention and program. Results showed high acceptability among the teacher, students, and parents. It became apparent that students were not reliably getting the parent newsletters to their parents to read, so a change to the protocol was made, in which students will receive incentives for having parents read newsletters and return signed forms, to increase parent participation. Other changes included small modifications to the curriculum, such as, clarifying instructions, changing in-class assignments to homework assignments, and including background reading materials for the teacher. The main trial is planned to be carried out in Spring 2008, in two elementary schools, utilizing four, fifth grade classes from each, with one school acting as the control and one as the intervention school. Results from this study can be used as an adjunct to the Coordinated Approach To Child Health (CATCH) program. ^
Resumo:
Background. Despite the increasing attention to the effects of dietary factors on lung cancer risk, epidemiological research on the role of black/green tea and coffee intake and lung cancer risk is scarce. The purpose of this study was to explore the following three hypotheses: (1) the preventive (protective) effect from lung cancer is higher in green tea than in black tea and coffee consumption. (2) brewed tea (either black or green) daily drinkers have lower odds of lung cancer than non-drinkers of brewed tea (3) regular black and green tea have more preventive effect against lung cancer than decaffeinated teas due to the synergistic effect of caffeine and other tea components. ^ Methods. Data on 1,088 lung cancer cases and 1,127 controls from an ongoing epidemiological study of lung cancer by the Department of Epidemiology of the University of Texas M.D. Anderson Cancer were analyzed. Multiple logistic regressions were performed for testing associations between frequency of specific types of tea/coffee consumption and the risk of lung cancer. ^ Results. We observed that more than a cup a week of green tea and decaffeinated black tea were significantly associated with reduced odds of lung cancer by 64% for green tea (adjusted OR = 0.44; 95% CI = 0.31–0.64), 36% for decaffeinated black tea (OR = 0.64; 95% CI = 0.45–0.90), when compared with non-drinkers and those who drank less than a cup a week. On the other hand, increasing intake of regular coffee (more than 3 cups a day) was associated with a 30% higher odds ratio of lung cancer (OR = 1.30; 95% CI = 1.01–1.09). No association was found between regular black tea, decaffeinated coffee consumption and the odds ratio of lung cancer. However, when drinkers of other tea/coffee beverages were excluded from each model in order to explore the independent effect of each type of tea/coffee, green tea and decaffeinated black tea-lung cancer associations remained but no association was observed for drinkers of regular coffee. ^ Conclusion. We report the chemopreventive effects of more than a cup a week of green tea and decaffeinated black tea on lung cancer. ^
Resumo:
Supermarket nutrient movement, a community food consumption measure, aggregated 1,023 high-fat foods, representing 100% of visible fats and approximately 44% of hidden fats in the food supply (FAO, 1980). Fatty acid and cholesterol content of foods shipped from the warehouse to 47 supermarkets located in the Houston area were calculated over a 6 month period. These stores were located in census tracts with over 50% of a given ethnicity: Hispanic, black non-Hispanic, or white non-Hispanic. Categorizing the supermarket census tracts by predominant ethnicity, significant differences were found by ANOVA in the proportion of specific fatty acids and cholesterol content of the foods examined. Using ecological regression, ethnicity, income, and median age predicted supermarket lipid movements while residential stability did not. No associations were found between lipid movements and cardiovascular disease mortality, making further validation necessary for epidemiological application of this method. However, it has been shown to be a non-reactive and cost-effective method appropriate for tracking target foods in populations of groups, and for assessing the impact of mass media nutrition education, legislation, and fortification on community food and nutrient purchase patterns. ^
Resumo:
Childhood obesity is a significant public health problem. Over 15 percent of children in the United States are obese, and about 25 percent of children in Texas are overweight (CDC NHANES). Furthermore, about 30 percent of elementary school aged children in Harris County, Texas are overweight or obese (Children at Risk Institute 2010). In addition to actions such as increasing physical activity, decreasing television watching and video game time, decreasing snacking on low nutrient calorie dense foods and sugar sweetened beverages, children need to consume more fruits and vegetables. According to the National Health and Nutrition Examination Survey (NHANES) from 2002, about 26 percent of U.S. children are meeting the recommendations for daily fruit intake and about 16 percent are meeting the recommendations for daily vegetable intake (CDC NHANES). In 2004, the average total intake of vegetables was 0.9 cups per day and 1.1 cups of fruit per day by children ages four to nine years old in the U.S. (CDC NHANES). Not only do children need effective nutrition education to learn about fruits and vegetables, they also need access and repeated exposure to fruits and vegetables (Anderson 2009, Briefel 2009). Nutrition education interventions that provide a structured, hands-on curriculum such as school gardens have produced significant changes in child fruit and vegetable intake (Blair 2009, McAleese 2007). To prevent childhood obesity from continuing into adolescence and adulthood, effective nutrition education interventions need to be implemented immediately and for the long-term. However, research has shown short-term nutrition education interventions such as summer camps to be effective for significant changes in child fruit and vegetable intake, preferences, and knowledge (Heim 2009). ^ A four week summer camp based on cooking and gardening was implemented at 6 Multi-Service centers in a large, urban city. The participants included children ranging in age from 7 to 14 years old (n=64). The purpose of the camp was to introduce children to their food from the seed to the plate through the utilization of gardening and culinary exercises. The summer camp activities were aimed at increasing the children's exposure, willingness to try, preferences, knowledge, and intake of fruits and vegetables. A survey was given on the first day of camp and again on the last day of camp that measured the pre- and post differences in knowledge, intake, willingness to try, and preferences of fruits and vegetables. The present study examined the short-term effectiveness of a cooking and garden-based nutrition education program on the knowledge, willingness, preferences, and intake among children aged 8 to 13 years old (n=40). The final sample of participants (n=40) was controlled for those who completed pre- and post-test surveys and who were in or above the third grade level. Results showed a statistically significant increase in the reported intake of vegetables and preferences for vegetables, specifically green beans, and fruits. There was also a significant increase in preferences for fruits among boys and participants ages 11 to 13 years. The results showed a change in the expected direction of willingness to try, preferences for vegetables, and intake of fruit, however these were not statistically significant. Interestingly, the results also showed a decrease in the intake of low nutrient calorie dense foods such as sweets and candy.^
Resumo:
Purpose: School districts in the U.S. regularly offer foods that compete with the USDA reimbursable meal, known as `a la carte' foods. These foods must adhere to state nutritional regulations; however, the implementation of these regulations often differs across districts. The purpose of this study is to compare two methods of offering a la carte foods on student's lunch intake: 1) an extensive a la carte program in which schools have a separate area for a la carte food sales, that includes non-reimbursable entrees; and 2) a moderate a la carte program, which offers the sale of a la carte foods on the same serving line with reimbursable meals. ^ Methods: Direct observation was used to assess children's lunch consumption in six schools, across two districts in Central Texas (n=373 observations). Schools were matched on socioeconomic status. Data collectors were randomly assigned to students, and recorded foods obtained, foods consumed, source of food, gender, grade, and ethnicity. Observations were entered into a nutrient database program, FIAS Millennium Edition, to obtain nutritional information. Differences in energy and nutrient intake across lunch sources and districts were assessed using ANOVA and independent t-tests. A linear regression model was applied to control for potential confounders. ^ Results: Students at schools with extensive a la carte programs consumed significantly more calories, carbohydrates, total fat, saturated fat, calcium, and sodium compared to students in schools with moderate a la carte offerings (p<.05). Students in the extensive a la carte program consumed approximately 94 calories more than students in the moderate a la carte program. There was no significant difference in the energy consumption in students who consumed any amount of a la carte compared to students who consumed none. In both districts, students who consumed a la carte offerings were more likely to consume sugar-sweetened beverages, sweets, chips, and pizza compared to students who consumed no a la carte foods. ^ Conclusion: The amount, type and method of offering a la carte foods can significantly affect student dietary intake. This pilot study indicates that when a la carte foods are more available, students consume more calories. Findings underscore the need for further investigation on how availability of a la carte foods affects children's diets. Guidelines for school a la carte offerings should be maximized to encourage the consumption of healthful foods and appropriate energy intake.^
Resumo:
The purpose of this study was to evaluate students' lunch consumption compared to NSLP guidelines, the contribution of competitive foods to calorie intake at lunch, and the differences in nutrient and food group intake between the a la carte food consumers and non- a la carte food consumers.^ In Fall 2011, 1170 elementary and 440 intermediate students were observed anonymously during school lunch. The foods eaten, their source, grade level, and gender were recorded. All a la carte offerings met the Texas School Nutrition Policy.^ Differences in nutrient and food group intake by grade level and between students who consumed a la carte and those who did not were assessed using ANCOVA. A chi-squared analysis was conducted to evaluate differences in a la carte food consumption by grade level, gender, and the school's low income status.^ Average lunch intakes for elementary students were 457 (SD 164) calories for elementary students and 541 calories (SD 188) for intermediate students (p<0.001). 760 students (47%) consumed 937 a la carte foods, with the most often consumed items being chips (32%), ice cream (22%) and snack items (18%). Mean a la carte food intakes were 60 and 98 calories for elementary and intermediate schools respectively (p<0.001). Significantly more (p<0.000) intermediate students (34.3%) consumed a la carte items compared to elementary students (27.5%).^ Students who consumed a la carte foods had significantly higher intakes of calories (p<0.000), fat (p<0.000), sodium (p<0.002), fiber (p<0.000), added sugar (p<0.000), total grains (p<0.000), dessert foods (p<0.000), and snack chips (p<0.000) and lower intakes of vitamin A (p<0.001), iron (p<0.000), fruit (p<0.022), vegetables (p<0.031), milk (p<0.000), and juice (p<0.000) compared to students who did not eat a la carte foods.^ Although previous studies have found that reducing availability of unhealthy items at school decreased student consumption of these items, the results of this study indicate that even the strict guidelines set forth by the state of Texas are not sufficient to prevent increased caloric intake and poor nutrient intake. Strategies to improve student selection and consumption at school lunch when a la carte foods are available are warranted.^
Resumo:
Standing stocks and production rates for phytoplankton and heterotrophic bacteria were examined during four expeditions in the western Arctic Ocean (Chukchi Sea and Canada Basin) in the spring and summer of 2002 and 2004. Rates of primary production (PP) and bacterial production (BP) were higher in the summer than in spring and in shelf waters than in the basin. Most surprisingly, PP was 3-fold higher in 2004 than in 2002; ice-corrected rates were 1581 and 458 mg C/m**2/d respectively, for the entire region. The difference between years was mainly due to low ice coverage in the summer of 2004. The spatial and temporal variation in PP led to comparable variation in BP. Although temperature explained as much variability in BP as did PP or phytoplankton biomass, there was no relationship between temperature and bacterial growth rates above about 0°C. The average ratio of BP to PP was 0.06 and 0.79 when ice-corrected PP rates were greater than and less than 100 mg C/m**2/d, respectively; the overall average was 0.34. Bacteria accounted for a highly variable fraction of total respiration, from 3% to over 60% with a mean of 25%. Likewise, the fraction of PP consumed by bacterial respiration, when calculated from growth efficiency (average of 6.9%) and BP estimates, varied greatly over time and space (7% to >500%). The apparent uncoupling between respiration and PP has several implications for carbon export and storage in the western Arctic Ocean.
Resumo:
The structure and variability of pelagic food webs along the north and northwestern shelf of the Iberian Peninsula were analysed using natural abundance of nitrogen stable isotopes of plankton and pelagic consumers. Plankton composition was mainly studied in size-fractionated samples, but also the isotopic signatures of three copepod species, as representative of primary consumers, were considered. Several fish species were included as planktivorous consumers, with special attention to sardine (Sardina pilchardus). Finally, top pelagic consumers were represented by the common dolphin (Delphinus delphis). The relationship between trophic position and body size implies large variability in the ratio of predator to prey sizes, likely because widespread omnivory and plankton consumption by relatively large predators. Planktivorous species share a common trophic position, suggesting potential competition for food, and low nitrogen isotope enrichment between prey and consumers suggest nutrient limitation and recycling at the base of the food web. Both experimental and field evidences indicate that the muscle of sardine integrates fish diet over seasonal periods and reflects the composition of plankton from large shelf areas. The low mobility of sardines during periods of low population size is consistent with differential isotopic signatures found in shelf zones characterised by upwelling nutrient inputs.
Resumo:
Theory and observation indicate that changes in the rate of primary production can alter the balance between the bottom-up influences of plants and resources and the top-down regulation of herbivores and predators on ecosystem structure and function. The Exploitation Ecosystem Hypothesis (EEH) posited that as aboveground net primary productivity (ANPP) increases, the additional biomass should support higher trophic levels. We developed an extension of EEH to include the impacts of increases in ANPP on belowground consumers in a similar manner as aboveground, but indirectly through changes in the allocation of photosynthate to roots. We tested our predictions for plants aboveground and for phytophagous nematodes and their predators belowground in two common arctic tundra plant communities subjected to 11 years of increased soil nutrient availability and/or exclusion of mammalian herbivores. The less productive dry heath (DH) community met the predictions of EEH aboveground, with the greatest ANPP and plant biomass in the fertilized plots protected from herbivory. A palatable grass increased in fertilized plots while dwarf evergreen shrubs and lichens declined. Belowground, phytophagous nematodes also responded as predicted, achieving greater biomass in the higher ANPP plots, whereas predator biomass tended to be lower in those same plots (although not significantly). In the higher productivity moist acidic tussock (MAT) community, aboveground responses were quite different. Herbivores stimulated ANPP and biomass in both ambient and enriched soil nutrient plots; maximum ANPP occurred in fertilized plots exposed to herbivory. Fertilized plots became dominated by dwarf birch (a deciduous shrub) and cloudberry (a perennial forb); under ambient conditions these two species coexist with sedges, evergreen dwarf shrubs, and Sphagnum mosses. Phytophagous nematodes did not respond significantly to changes in ANPP, although predator biomass was greatest in control plots. The contrasting results of these two arctic tundra plant communities suggest that the predictions of EEH may hold for very low ANPP communities, but that other factors, including competition and shifts in vegetation composition toward less palatable species, may confound predicted responses to changes in productivity in higher ANPP communities such as the MAT studied here.
Resumo:
Continuous measurements between 0 and 200 m depth were performed every 2 h over two separate periods of four days at a station in the open northwestern Mediterranean Sea (Dyfamed Station) during the Dynaproc cruise in May 1995. Estimates of the daily variations in profiles of temperature, partial pressure of CO2, oxygen, chlorophyll a and nutrients were obtained. The distributions of the various physical and chemical properties were clearly different during the two time series, which were separated by a period of 11 days during which a wind event occurred. The mean daily utilization or production due to biological processes of dissolved inorganic carbon (DIC), nitrate+nitrite and oxygen were calculated along isopycnals using a vertical diffusion model. Between the surface and about 20 m depth, DIC was consumed and O2 released during the two time series while the nitrate+nitrite concentrations as well as supplies were zero. After the wind event, the O2 : C : N ratios of consumption (or production) were, on average, near the Redfield ratios, but during the first time series, the C : N utilization ratio between 20 and 35 m was two to three times that of Redfield stoichiometry and the oxygen release was low. The integrated net community production (NCP) in terms of carbon was equivalent during the two time series, whereas the chlorophyll a biomass was twice as high, on average, during the first time series but did decrease. These results imply that the production systems were different during the two periods. The first time series corresponds to a period at the end of production, due to the nutrient depletion in the euphotic layer. The formation of degradation products of the living material in dissolved organic form is probably important as indicated by the high C : N utilization ratios. The second time series corresponds to a reactivation of the primary production due to the upward shift of nutrients after the wind event.
Resumo:
Distinctive light-dark color cycles in sediment beneath the Benguela Current Upwelling System indicate repetitive alternations in sediment delivery and deposition. Geochemical proxies for paleoproductivity and for depositional conditions were employed to investigate the paleoceanographic processes involved in creating these cycles in three mid-Pleistocene intervals from ODP Sites 1082 and 1084. Concentrations of total organic carbon (TOC) vary between 3.5 and 17.1%. Concentrations of CaCO3 vary inversely to TOC and Al, which suggests that both carbonate dissolution and terrigenous dilution contribute to the light-dark cycles. Opal concentrations are independent of both TOC and CaCO3, therefore eliminating diatom production and lateral transport of shelf material as causes of the light-dark cycles. d13Corg and d15Ntot values do not vary across light-dark sediment intervals, implying that the extent of relative nutrient utilization did not change. The stable d15Ntot values represent a balanced change in nitrate supply and export production and therefore indicate that productivity was elevated during deposition of the TOC-rich layers. Parallel changes in concentrations of indicator trace elements and TOC imply that changes in organic matter delivery influenced geochemical processes on the seafloor by controlling consumption of pore water oxygen. Cu, Ni, and Zn are enriched in the darker sediment as a consequence of greater organic matter delivery. Redox-sensitive metals vary due to loss (Mn and Ba) or enrichment (Mo) under reducing conditions created by TOC oxidation. Organic matter delivery impacts subsequent geochemical changes such as carbonate dissolution, sulfate reduction and the concentration of metals. Thus, export production is considered ultimately responsible for the generation of the color cycles.
Resumo:
During the European Iron Fertilisation Experiment (EIFEX), performed in the Southern Ocean, we investigated the reactions of different phytoplankton size classes to iron fertilization, applying measurements of size fractionated pigments, particulate organic matter, microscopy, and flow cytometry. Chlorophyll a (Chl a) concentrations at 20-m depth increased more than fivefold following fertilization through day 26, while concentrations of particulate organic carbon (POC), nitrogen (PON), and phosphorus (POP) roughly doubled through day 29. Concentrations of Chl a and particulate organic matter decreased toward the end of the experiment, indicating the demise of the iron-induced phytoplankton bloom. Despite a decrease in total diatom biomass at the end of the experiment, biogenic particulate silicate (bPSi) concentrations increased steadily due to a relative increase of heavily silicified diatoms. Although diatoms >10 µm were the main beneficiaries of iron fertilization, the growth of small diatoms (2-8 mm) was also enhanced, leading to a shift from a haptophyte- to a diatom-dominated community in this size fraction. The total biomass had lower than Redfield C : N, N : P, and C : P ratios but did not show significant trends after iron fertilization. This concealed various alterations in the elemental composition of the different size fractions. The microplankton (>20 µm) showed decreasing C : N and increasing N : P and C : P ratios, possibly caused by increased N uptake and the consumption of cellular P pools. The nanoplankton (2-20 µm) showed almost constant C : N and decreasing N : P and C : P ratios. Our results suggest that the latter is caused by a shift in composition of taxonomic groups.