971 resultados para nitrogen and potassium fertilizers
Resumo:
Pearl millet (Penisetum glaucum) is an interesting species to be used as cover crop in tropical areas, showing a high ability in potassium uptake. Potassium (K) is not linked to organic compounds in the plant, and can easily be released from decaying straw becoming available for subsequent crops. This experiment evaluated K leaching from millet straw grown under potassium rates (0, 100, 200, and 300 mg dm-3), and submitted to five levels of simulated rain (5, 10, 20, 40, and 80 mm). Plants were grown in soil filled pots in a greenhouse. On the 50th day after emergence, the plants were desiccated with glyphosate. Artificial rain was applied over the straw. Potassium deficiency speeds up millet dehydration after herbicide application and increases lightly rain water retention in the straw. The amount of K leached right after plant desiccation is correlated with the residue nutrient content and can be as high as 64 kg ha-1 considering a mulch of 8 t ha -1. Although well-nourished millet plants release considerable amounts of K with the first rains, a large percentage of the nutrient is still retained in the straw. Copyright © Taylor & Francis, Inc.
Resumo:
The dinuclear azido-palladium(II) complex [Pd2(N3)4(PPh3)2(μ-ted)], where PPh3 = triphenylphosphine and ted = triethylenediamine, was synthesized and characterized by single-crystal X-ray diffraction. The title compound was crystallized in a triclinic system, space group P1 with a = 11.5875(2)Å, b = 13.0817(3)Å, c = 15.2618(3)Å, α = 93.306(2)°, β =110.040(1)°, γ = 98.486(1)°, V = 2134.95(8)Å3, Z = 2. Each Pd(II) center displays a distorted squareplanar coordination environment formed by two N atoms from two trans terminally coordinated azido groups, one P atom from the phosphine and one N atom from the bridging ted ligand. 2008 © The Japan Society for Analytical Chemistry.
Resumo:
Soil management and crop rotations can affect P and K budget in soil, decreasing losses, and increasing fertilizer use efficiency. The P and K budget in the soil-plant system at depths up to 60. cm was studied for different soil managements and crop rotations under no-till for three years in Botucatu, São Paulo, Brazil. The investigated crop rotations were: triticale (X Triticosecale) and sunflower (Helianthus annuus) cropped in autumn-winter; pearl millet (Pennisetum glaucum), forage sorghum (Sorghum bicolor), and Sunn hemp (Crotalaria juncea) were grown in the spring, as well as an additional treatment with chiseling followed by a fallow period; and soybean (Glycini max, L., Merril) was cropped in the summer. Each year triticale and sunflower were grown in plots and pearl millet, forage sorghum, Sunn hemp and of chisel/fallow in sub-plots. The triticale/millet rotation led to the largest decrease in available P within the 0-0.60. m layer of the soil profile and the largest K increase within the 0-0.05. m layer. Potassium mobility in the soil profile and the increases in the available K content in the 0.40-0.60. m layer were independent of the management system. Crop rotations with or without chiseling are not effective in preventing soil P losses. There is considerable K leaching below 0.60. m, but chiseling and the use of high K accumulating plants as triticale results in lower K losses. © 2012 Elsevier B.V.
Resumo:
Nutrient use efficiency has become an important issue in agriculture, and crop rotations with deep vigorous rooted cover crops under no till may be an important tool in increasing nutrient conservation in agricultural systems. Ruzigrass (Brachiaria ruziziensis) has a vigorous, deep root system and may be effective in cycling P and K. The balance of P and K in cropping systems with crop rotations using ruzigrass, pearl millet (Pennisetum glaucum) and ruzigrass + castor bean (Ricinus communis), chiseled or not, was calculated down to 0.60 m in the soil profile for 2 years. The cash crops were corn in the first year and soybean in the second year. Crop rotations under no-till increased available P amounts in the soil-plant system from 80 to 100 %, and reduced K losses between 4 and 23 %. The benefits in nutrient balance promoted by crop rotations were higher in the second year and under without chiseling. Plant residues deposited on the soil surface in no-till systems contain considerable nutrient reserve and increase fertilizer use efficiency. However, P release from ruzigrass grown as a sole crop is not synchronized with soybean uptake rate, which may result in decreased yields. © 2013 Springer Science+Business Media Dordrecht.
Resumo:
Pós-graduação em Agronomia (Ciência do Solo) - FCAV
Resumo:
Pós-graduação em Ciência Animal - FMVA
Resumo:
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)
Resumo:
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)
Resumo:
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)
Resumo:
Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)
Resumo:
Although many studies have shown that soil solution chemistry can be a reliable indicator of biogeochemical cycling in forest ecosystems, the effects of litter manipulations on the fluxes of dissolved elements in gravitational soil solutions have rarely been investigated. We estimated the fluxes of NH4-N, NO3-N, K, Ca, Mg, Na, Cl, dissolved organic nitrogen (DON) and dissolved organic carbon (DOC) over the first two years after re-planting Eucalyptus trees in the coastal area of Congo. Two treatments were replicated in two blocks after clear-cutting 7-year-old stands: in treatment R, all the litter above the mineral soil was removed before planting, and in a double slash (DS) treatment, the amount of harvest residues was doubled. The soil solutions were sampled down to a depth of 4 m and the water fluxes were estimated using the Hydrus 1D model parameterized from soil moisture measurements in 4 plots. Isotopic and spectroscopic analytical techniques were used to assess the changes in dissolved organic matter (DOM) properties throughout the transfer in the soil. The first year after planting, the fluxes of NH4-N, K, Ca, Mg, Na, Cl and DOC in the topsoil of the DS treatment were 2-5 times higher than in R, which showed that litter was a major source of dissolved nutrients. Nutrient fluxes in gravitational solutions decreased sharply in the second year after planting, irrespective of the soil depth, as a result of intense nutrient uptake by Eucalyptus trees. Losses of dissolved nutrients were noticeably low in these Eucalyptus plantations despite a low cation exchange capacity, a coarse soil texture and large amounts of harvest residues left on-site at the clear cut in the DS treatment. All together, these results clarified the strong effect of litter manipulation observed on eucalypt growth in Congolese sandy soils. DOM fluxes, as well as changes in delta C-13, C:N and aromaticity of DOM throughout the soil profile showed that the organic compounds produced in the litter layer were mainly consumed by microorganisms or retained in the topsoil. Below a depth of 15 cm, most of the DOC and the DON originated from the first 2 cm of the soil and the exchanges between soil solutions and soil organic matter were low. (C) 2014 Elsevier B.V. All rights reserved.
Resumo:
Despite the high nutritional requirements of Tifton 85 grass, often the importance of liming and potassium fertilization for this forage has been neglected. In order to evaluate the effects of such practices on shoots dry matter and tillering of this forage, was carried out an experiment in green-house conditions, by two cuts, using samples of an Oxisol medium texture and a sandy soil. Efforts were also made to determine parameters to support recommendations for liming and potassium fertilization. Was adopted the completely randomized design with four replications in a factorial scheme 4x4x2, with four K rates (0, 60, 120 and 180 mg kg(-1) K), four pH values (original, 4.9, 5.9 and 6.4) and two soils. Potassium fertilization and liming promoted a significant increase in shoot dry matter and tillering in Tifton 85 grass, in both soils and cuts. The highest yields of shoot dry matter were associated with a base saturation of 56% and pH 5.2. The critical levels of K in soil and plant were 1.7 mmol dm(-3) and 14.0 g kg(-1), respectively.
Resumo:
The jambu belongs to the family Asteraceae, tropical crop, nowadays, this plant has been considered as a promising vegetable crop, because to its pharmacological properties. Despite this novelty, the vegetable remains invisible in the statistics of production and market in the state of Para, Brazil. This research was carried out with the aim of comparing the economic productivity and phenological development by the morpho-physiological growth indexes of two cultivars of jambu organic manure and mineral fertilizers. The experiment was carried out at the Sao Manuel Experimental Farm (Sao Manuel-SP), which belongs to the Faculdade de Ciencias Agronomicas - UNESP, campus Botucatu. The experimental design was a factorial randomized blocks (2 x 2) with two fertilization (organic and mineral) and two cultivars (Jambuarana and Nazareth), with six replications, two fertilization (organic and mineral) and two cultivars (Jambuarana and Nazareth). The following characteristics were evaluated: Plant height (cm), Leaf area (cm(2)), Fresh mass (g), Dry mass (g), Leaf area index (LAI), Leaf area ratio (LAR), Specific leaf Area (SLA), Leaf Weight Ratio (LWR), Amount of water in the plant (QAPA) (g per plant set), Leaf specific weight (LSW) (g cm(-2) per plant set) and Economic productivity. All data were statistically analyzed by analysis of variance and the Tukey test (1%) for mean comparison, with the software SISVAR. In the conditions of this experiment was carried out, it was possible to verify that the cultivar Jamburana had not only a good agronomic development and economic productivity under organic fertilization but also the best morpho-physiological indexes, showing that this kind of fertilization increases the agronomic effectiveness of this cultivar.
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Eucalyptus plantations have seldom responded to N fertilization in tropical and subtropical regions of Brazil. This implies that rates of N mineralization have been adequate to supply tree needs. However, subsequent crop rotations with low N fertilization may result in declining concentrations of organic and potentially mineralizable N (N-0), and consequent loss of wood productivity. This study investigated (a) in situ N mineralization and N-0 in soils of eucalypt plantations in Sao Paulo state, Brazil; (b) tree growth responses to N fertilizer applied 6-18 months after planting; and (c) the relationships between N-0,N- other soil attributes and tree growth. We established eleven N fertilizer trials (maximum 240 kg ha(-1) of N) in E. grandis and E. grandis x urophylla plantations. The soil types at most sites were Oxisols and Quartzipsamments, with a range of organic matter (18 to 55 g kg(-1)) and clay contents (8% to 67%) in the 0-20 cm layer. Concentrations of N-0 were measured using anaerobic incubation on soil samples collected every three months (different seasons). The samples collected in spring and summer had N-0 140-400 kg ha(-1) (10%-19% total soil N), which were best correlated with soil texture and organic matter content. Rates of in situ net N mineralization (0-20 cm) ranged from 100 to 200 kg ha(-1) year(-1) and were not correlated with clay, total N, or N-0. These high N mineralization rates resulted in a low response to N fertilizer application during the early ages of stand growth, which were highest on sandy soils. At the end of the crop rotation, the response to N fertilizer was negligible and non-significant at all sites.