976 resultados para network forensic tools
Resumo:
Rapid development in industry have contributed to more complex systems that are prone to failure. In applications where the presence of faults may lead to premature failure, fault detection and diagnostics tools are often implemented. The goal of this research is to improve the diagnostic ability of existing FDD methods. Kernel Principal Component Analysis has good fault detection capability, however it can only detect the fault and identify few variables that have contribution on occurrence of fault and thus not precise in diagnosing. Hence, KPCA was used to detect abnormal events and the most contributed variables were taken out for more analysis in diagnosis phase. The diagnosis phase was done in both qualitative and quantitative manner. In qualitative mode, a networked-base causality analysis method was developed to show the causal effect between the most contributing variables in occurrence of the fault. In order to have more quantitative diagnosis, a Bayesian network was constructed to analyze the problem in probabilistic perspective.
Resumo:
Wireless sensor networks (WSNs) have shown wide applicability to many fields including monitoring of environmental, civil, and industrial settings. WSNs however are resource constrained by many competing factors that span their hardware, software, and networking. One of the central resource constrains is the charge consumption of WSN nodes. With finite energy supplies, low charge consumption is needed to ensure long lifetimes and success of WSNs. This thesis details the design of a power system to support long-term operation of WSNs. The power system’s development occurs in parallel with a custom WSN from the Queen’s MEMS Lab (QML-WSN), with the goal of supporting a 1+ year lifetime without sacrificing functionality. The final power system design utilizes a TPS62740 DC-DC converter with AA alkaline batteries to efficiently supply the nodes while providing battery monitoring functionality and an expansion slot for future development. Testing tools for measuring current draw and charge consumption were created along with analysis and processing software. Through their use charge consumption of the power system was drastically lowered and issues in QML-WSN were identified and resolved including the proper shutdown of accelerometers, and incorrect microcontroller unit (MCU) power pin connection. Controlled current profiling revealed unexpected behaviour of nodes and detailed current-voltage relationships. These relationships were utilized with a lifetime projection model to estimate a lifetime between 521-551 days, depending on the mode of operation. The power system and QML-WSN were tested over a long term trial lasting 272+ days in an industrial testbed to monitor an air compressor pump. Environmental factors were found to influence the behaviour of nodes leading to increased charge consumption, while a node in an office setting was still operating at the conclusion of the trail. This agrees with the lifetime projection and gives a strong indication that a 1+ year lifetime is achievable. Additionally, a light-weight charge consumption model was developed which allows charge consumption information of nodes in a distributed WSN to be monitored. This model was tested in a laboratory setting demonstrating +95% accuracy for high packet reception rate WSNs across varying data rates, battery supply capacities, and runtimes up to full battery depletion.
Resumo:
Aberrant behavior of biological signaling pathways has been implicated in diseases such as cancers. Therapies have been developed to target proteins in these networks in the hope of curing the illness or bringing about remission. However, identifying targets for drug inhibition that exhibit good therapeutic index has proven to be challenging since signaling pathways have a large number of components and many interconnections such as feedback, crosstalk, and divergence. Unfortunately, some characteristics of these pathways such as redundancy, feedback, and drug resistance reduce the efficacy of single drug target therapy and necessitate the employment of more than one drug to target multiple nodes in the system. However, choosing multiple targets with high therapeutic index poses more challenges since the combinatorial search space could be huge. To cope with the complexity of these systems, computational tools such as ordinary differential equations have been used to successfully model some of these pathways. Regrettably, for building these models, experimentally-measured initial concentrations of the components and rates of reactions are needed which are difficult to obtain, and in very large networks, they may not be available at the moment. Fortunately, there exist other modeling tools, though not as powerful as ordinary differential equations, which do not need the rates and initial conditions to model signaling pathways. Petri net and graph theory are among these tools. In this thesis, we introduce a methodology based on Petri net siphon analysis and graph network centrality measures for identifying prospective targets for single and multiple drug therapies. In this methodology, first, potential targets are identified in the Petri net model of a signaling pathway using siphon analysis. Then, the graph-theoretic centrality measures are employed to prioritize the candidate targets. Also, an algorithm is developed to check whether the candidate targets are able to disable the intended outputs in the graph model of the system or not. We implement structural and dynamical models of ErbB1-Ras-MAPK pathways and use them to assess and evaluate this methodology. The identified drug-targets, single and multiple, correspond to clinically relevant drugs. Overall, the results suggest that this methodology, using siphons and centrality measures, shows promise in identifying and ranking drugs. Since this methodology only uses the structural information of the signaling pathways and does not need initial conditions and dynamical rates, it can be utilized in larger networks.
Resumo:
Shape-based registration methods frequently encounters in the domains of computer vision, image processing and medical imaging. The registration problem is to find an optimal transformation/mapping between sets of rigid or nonrigid objects and to automatically solve for correspondences. In this paper we present a comparison of two different probabilistic methods, the entropy and the growing neural gas network (GNG), as general feature-based registration algorithms. Using entropy shape modelling is performed by connecting the point sets with the highest probability of curvature information, while with GNG the points sets are connected using nearest-neighbour relationships derived from competitive hebbian learning. In order to compare performances we use different levels of shape deformation starting with a simple shape 2D MRI brain ventricles and moving to more complicated shapes like hands. Results both quantitatively and qualitatively are given for both sets.
Resumo:
Wireless sensor networks (WSNs) differ from conventional distributed systems in many aspects. The resource limitation of sensor nodes, the ad-hoc communication and topology of the network, coupled with an unpredictable deployment environment are difficult non-functional constraints that must be carefully taken into account when developing software systems for a WSN. Thus, more research needs to be done on designing, implementing and maintaining software for WSNs. This thesis aims to contribute to research being done in this area by presenting an approach to WSN application development that will improve the reusability, flexibility, and maintainability of the software. Firstly, we present a programming model and software architecture aimed at describing WSN applications, independently of the underlying operating system and hardware. The proposed architecture is described and realized using the Model-Driven Architecture (MDA) standard in order to achieve satisfactory levels of encapsulation and abstraction when programming sensor nodes. Besides, we study different non-functional constrains of WSN application and propose two approaches to optimize the application to satisfy these constrains. A real prototype framework was built to demonstrate the developed solutions in the thesis. The framework implemented the programming model and the multi-layered software architecture as components. A graphical interface, code generation components and supporting tools were also included to help developers design, implement, optimize, and test the WSN software. Finally, we evaluate and critically assess the proposed concepts. Two case studies are provided to support the evaluation. The first case study, a framework evaluation, is designed to assess the ease at which novice and intermediate users can develop correct and power efficient WSN applications, the portability level achieved by developing applications at a high-level of abstraction, and the estimated overhead due to usage of the framework in terms of the footprint and executable code size of the application. In the second case study, we discuss the design, implementation and optimization of a real-world application named TempSense, where a sensor network is used to monitor the temperature within an area.
Resumo:
The International Long-Term Ecological Research (ILTER) network comprises > 600 scientific groups conducting site-based research within 40 countries. Its mission includes improving the understanding of global ecosystems and informs solutions to current and future environmental problems at the global scales. The ILTER network covers a wide range of social-ecological conditions and is aligned with the Programme on Ecosystem Change and Society (PECS) goals and approach. Our aim is to examine and develop the conceptual basis for proposed collaboration between ILTER and PECS. We describe how a coordinated effort of several contrasting LTER site-based research groups contributes to the understanding of how policies and technologies drive either toward or away from the sustainable delivery of ecosystem services. This effort is based on three tenets: transdisciplinary research; cross-scale interactions and subsequent dynamics; and an ecological stewardship orientation. The overarching goal is to design management practices taking into account trade-offs between using and conserving ecosystems toward more sustainable solutions. To that end, we propose a conceptual approach linking ecosystem integrity, ecosystem services, and stakeholder well-being, and as a way to analyze trade-offs among ecosystem services inherent in diverse management options. We also outline our methodological approach that includes: (i) monitoring and synthesis activities following spatial and temporal trends and changes on each site and by documenting cross-scale interactions; (ii) developing analytical tools for integration; (iii) promoting trans-site comparison; and (iv) developing conceptual tools to design adequate policies and management interventions to deal with trade-offs. Finally, we highlight the heterogeneity in the social-ecological setting encountered in a subset of 15 ILTER sites. These study cases are diverse enough to provide a broad cross-section of contrasting ecosystems with different policy and management drivers of ecosystem conversion; distinct trends of biodiversity change; different stakeholders’ preferences for ecosystem services; and diverse components of well-being issues.
Resumo:
Background: Digital forensics is a rapidly expanding field, due to the continuing advances in computer technology and increases in data stage capabilities of devices. However, the tools supporting digital forensics investigations have not kept pace with this evolution, often leaving the investigator to analyse large volumes of textual data and rely heavily on their own intuition and experience. Aim: This research proposes that given the ability of information visualisation to provide an end user with an intuitive way to rapidly analyse large volumes of complex data, such approached could be applied to digital forensics datasets. Such methods will be investigated; supported by a review of literature regarding the use of such techniques in other fields. The hypothesis of this research body is that by utilising exploratory information visualisation techniques in the form of a tool to support digital forensic investigations, gains in investigative effectiveness can be realised. Method:To test the hypothesis, this research examines three different case studies which look at different forms of information visualisation and their implementation with a digital forensic dataset. Two of these case studies take the form of prototype tools developed by the researcher, and one case study utilises a tool created by a third party research group. A pilot study by the researcher is conducted on these cases, with the strengths and weaknesses of each being drawn into the next case study. The culmination of these case studies is a prototype tool which was developed to resemble a timeline visualisation of the user behaviour on a device. This tool was subjected to an experiment involving a class of university digital forensics students who were given a number of questions about a synthetic digital forensic dataset. Approximately half were given the prototype tool, named Insight, to use, and the others given a common open-source tool. The assessed metrics included: how long the participants took to complete all tasks, how accurate their answers to the tasks were, and how easy the participants found the tasks to complete. They were also asked for their feedback at multiple points throughout the task. Results:The results showed that there was a statistically significant increase in accuracy for one of the six tasks for the participants using the Insight prototype tool. Participants also found completing two of the six tasks significantly easier when using the prototype tool. There were no statistically significant different difference between the completion times of both participant groups. There were no statistically significant differences in the accuracy of participant answers for five of the six tasks. Conclusions: The results from this body of research show that there is evidence to suggest that there is the potential for gains in investigative effectiveness when information visualisation techniques are applied to a digital forensic dataset. Specifically, in some scenarios, the investigator can draw conclusions which are more accurate than those drawn when using primarily textual tools. There is also evidence so suggest that the investigators found these conclusions to be reached significantly more easily when using a tool with a visual format. None of the scenarios led to the investigators being at a significant disadvantage in terms of accuracy or usability when using the prototype visual tool over the textual tool. It is noted that this research did not show that the use of information visualisation techniques leads to any statistically significant difference in the time taken to complete a digital forensics investigation.
Resumo:
Nervous system disorders are associated with cognitive and motor deficits, and are responsible for the highest disability rates and global burden of disease. Their recovery paths are vulnerable and dependent on the effective combination of plastic brain tissue properties, with complex, lengthy and expensive neurorehabilitation programs. This work explores two lines of research, envisioning sustainable solutions to improve treatment of cognitive and motor deficits. Both projects were developed in parallel and shared a new sensible approach, where low-cost technologies were integrated with common clinical operative procedures. The aim was to achieve more intensive treatments under specialized monitoring, improve clinical decision-making and increase access to healthcare. The first project (articles I – III) concerned the development and evaluation of a web-based cognitive training platform (COGWEB), suitable for intensive use, either at home or at institutions, and across a wide spectrum of ages and diseases that impair cognitive functioning. It was tested for usability in a memory clinic setting and implemented in a collaborative network, comprising 41 centers and 60 professionals. An adherence and intensity study revealed a compliance of 82.8% at six months and an average of six hours/week of continued online cognitive training activities. The second project (articles IV – VI) was designed to create and validate an intelligent rehabilitation device to administer proprioceptive stimuli on the hemiparetic side of stroke patients while performing ambulatory movement characterization (SWORD). Targeted vibratory stimulation was found to be well tolerated and an automatic motor characterization system retrieved results comparable to the first items of the Wolf Motor Function Test. The global system was tested in a randomized placebo controlled trial to assess its impact on a common motor rehabilitation task in a relevant clinical environment (early post-stroke). The number of correct movements on a hand-to-mouth task was increased by an average of 7.2/minute while the probability to perform an error decreased from 1:3 to 1:9. Neurorehabilitation and neuroplasticity are shifting to more neuroscience driven approaches. Simultaneously, their final utility for patients and society is largely dependent on the development of more effective technologies that facilitate the dissemination of knowledge produced during the process. The results attained through this work represent a step forward in that direction. Their impact on the quality of rehabilitation services and public health is discussed according to clinical, technological and organizational perspectives. Such a process of thinking and oriented speculation has led to the debate of subsequent hypotheses, already being explored in novel research paths.
Resumo:
Travel demand models are important tools used in the analysis of transportation plans, projects, and policies. The modeling results are useful for transportation planners making transportation decisions and for policy makers developing transportation policies. Defining the level of detail (i.e., the number of roads) of the transport network in consistency with the travel demand model’s zone system is crucial to the accuracy of modeling results. However, travel demand modelers have not had tools to determine how much detail is needed in a transport network for a travel demand model. This dissertation seeks to fill this knowledge gap by (1) providing methodology to define an appropriate level of detail for a transport network in a given travel demand model; (2) implementing this methodology in a travel demand model in the Baltimore area; and (3) identifying how this methodology improves the modeling accuracy. All analyses identify the spatial resolution of the transport network has great impacts on the modeling results. For example, when compared to the observed traffic data, a very detailed network underestimates traffic congestion in the Baltimore area, while a network developed by this dissertation provides a more accurate modeling result of the traffic conditions. Through the evaluation of the impacts a new transportation project has on both networks, the differences in their analysis results point out the importance of having an appropriate level of network detail for making improved planning decisions. The results corroborate a suggested guideline concerning the development of a transport network in consistency with the travel demand model’s zone system. To conclude this dissertation, limitations are identified in data sources and methodology, based on which a plan of future studies is laid out.
Resumo:
Well-designed marine protected area (MPA) networks can deliver a range of ecological, economic and social benefits, and so a great deal of research has focused on developing spatial conservation prioritization tools to help identify important areas. However, whilst these software tools are designed to identify MPA networks that both represent biodiversity and minimize impacts on stakeholders, they do not consider complex ecological processes. Thus, it is difficult to determine the impacts that proposed MPAs could have on marine ecosystem health, fisheries and fisheries sustainability. Using the eastern English Channel as a case study, this paper explores an approach to address these issues by identifying a series of MPA networks using the Marxan and Marxan with Zones conservation planning software and linking them with a spatially explicit ecosystem model developed in Ecopath with Ecosim. We then use these to investigate potential trade-offs associated with adopting different MPA management strategies. Limited-take MPAs, which restrict the use of some fishing gears, could have positive benefits for conservation and fisheries in the eastern English Channel, even though they generally receive far less attention in research on MPA network design. Our findings, however, also clearly indicate that no-take MPAs should form an integral component of proposed MPA networks in the eastern English Channel, as they not only result in substantial increases in ecosystem biomass, fisheries catches and the biomass of commercially valuable target species, but are fundamental to maintaining the sustainability of the fisheries. Synthesis and applications. Using the existing software tools Marxan with Zones and Ecopath with Ecosim in combination provides a powerful policy-screening approach. This could help inform marine spatial planning by identifying potential conflicts and by designing new regulations that better balance conservation objectives and stakeholder interests. In addition, it highlights that appropriate combinations of no-take and limited-take marine protected areas might be the most effective when making trade-offs between long-term ecological benefits and short-term political acceptability.
Resumo:
We show a simulation model for capacity analysis in mobile systems using a geographic information system (GIS) based tool, used for coverage calculations and frequency assignment, and MATLAB. The model was developed initially for “narrowband” CDMA and TDMA, but was modified for WCDMA. We show also some results for a specific case in “narrowband” CDMA
Resumo:
We review mathematical aspects of biophysical dynamics, signal transduction and network architecture that have been used to uncover functionally significant relations between the dynamics of single neurons and the networks they compose. We focus on examples that combine insights from these three areas to expand our understanding of systems neuroscience. These range from single neuron coding to models of decision making and electrosensory discrimination by networks and populations, as well as coincidence detection in pairs of dendrites and the dynamics of large networks of excitable dendritic spines. We conclude by describing some of the challenges that lie ahead as the applied mathematics community seeks to provide the tools that will ultimately underpin systems neuroscience.
Resumo:
When studying a biological regulatory network, it is usual to use boolean network models. In these models, boolean variables represent the behavior of each component of the biological system. Taking in account that the size of these state transition models grows exponentially along with the number of components considered, it becomes important to have tools to minimize such models. In this paper, we relate bisimulations, which are relations used in the study of automata (general state transition models) with attractors, which are an important feature of biological boolean models. Hence, we support the idea that bisimulations can be important tools in the study some main features of boolean network models.We also discuss the differences between using this approach and other well-known methodologies to study this kind of systems and we illustrate it with some examples.
Resumo:
Several unmet needs have been identified in allergic rhinitis: identification of the time of onset of the pollen season, optimal control of rhinitis and comorbidities, patient stratification, multidisciplinary team for integrated care pathways, innovation in clinical trials and, above all, patient empowerment. MASK-rhinitis (MACVIA-ARIA Sentinel NetworK for allergic rhinitis) is a simple system centred around the patient which was devised to fill many of these gaps using Information and Communications Technology (ICT) tools and a clinical decision support system (CDSS) based on the most widely used guideline in allergic rhinitis and its asthma comorbidity (ARIA 2015 revision). It is one of the implementation systems of Action Plan B3 of the European Innovation Partnership on Active and Healthy Ageing (EIP on AHA). Three tools are used for the electronic monitoring of allergic diseases: a cell phone-based daily visual analogue scale (VAS) assessment of disease control, CARAT (Control of Allergic Rhinitis and Asthma Test) and e-Allergy screening (premedical system of early diagnosis of allergy and asthma based on online tools). These tools are combined with a clinical decision support system (CDSS) and are available in many languages. An e-CRF and an e-learning tool complete MASK. MASK is flexible and other tools can be added. It appears to be an advanced, global and integrated ICT answer for many unmet needs in allergic diseases which will improve policies and standards.
Resumo:
This report summarizes the topics and activities of the fourth edition of the annual COMBINE meeting, held in Paris during September 16-20 2013,