852 resultados para network design
Resumo:
An optimal control law for a general nonlinear system can be obtained by solving Hamilton-Jacobi-Bellman equation. However, it is difficult to obtain an analytical solution of this equation even for a moderately complex system. In this paper, we propose a continuoustime single network adaptive critic scheme for nonlinear control affine systems where the optimal cost-to-go function is approximated using a parametric positive semi-definite function. Unlike earlier approaches, a continuous-time weight update law is derived from the HJB equation. The stability of the system is analysed during the evolution of weights using Lyapunov theory. The effectiveness of the scheme is demonstrated through simulation examples.
Resumo:
This paper presents the design and implementation of a learning controller for the Automatic Generation Control (AGC) in power systems based on a reinforcement learning (RL) framework. In contrast to the recent RL scheme for AGC proposed by us, the present method permits handling of power system variables such as Area Control Error (ACE) and deviations from scheduled frequency and tie-line flows as continuous variables. (In the earlier scheme, these variables have to be quantized into finitely many levels). The optimal control law is arrived at in the RL framework by making use of Q-learning strategy. Since the state variables are continuous, we propose the use of Radial Basis Function (RBF) neural networks to compute the Q-values for a given input state. Since, in this application we cannot provide training data appropriate for the standard supervised learning framework, a reinforcement learning algorithm is employed to train the RBF network. We also employ a novel exploration strategy, based on a Learning Automata algorithm,for generating training samples during Q-learning. The proposed scheme, in addition to being simple to implement, inherits all the attractive features of an RL scheme such as model independent design, flexibility in control objective specification, robustness etc. Two implementations of the proposed approach are presented. Through simulation studies the attractiveness of this approach is demonstrated.
Resumo:
A neural-network-aided nonlinear dynamic inversion-based hybrid technique of model reference adaptive control flight-control system design is presented in this paper. Here, the gains of the nonlinear dynamic inversion-based flight-control system are dynamically selected in such a manner that the resulting controller mimics a single network, adaptive control, optimal nonlinear controller for state regulation. Traditional model reference adaptive control methods use a linearized reference model, and the presented control design method employs a nonlinear reference model to compute the nonlinear dynamic inversion gains. This innovation of designing the gain elements after synthesizing the single network adaptive controller maintains the advantages that an optimal controller offers, yet it retains a simple closed-form control expression in state feedback form, which can easily be modified for tracking problems without demanding any a priori knowledge of the reference signals. The strength of the technique is demonstrated by considering the longitudinal motion of a nonlinear aircraft system. An extended single network adaptive control/nonlinear dynamic inversion adaptive control design architecture is also presented, which adapts online to three failure conditions, namely, a thrust failure, an elevator failure, and an inaccuracy in the estimation of C-M alpha. Simulation results demonstrate that the presented adaptive flight controller generates a near-optimal response when compared to a traditional nonlinear dynamic inversion controller.
Resumo:
A useful insight into managerial decision making can be found from simulation of business systems, but existing work on simulation of supply chain behaviour has largely considered non-competitive chains. Where competitive agents have been examined, they have generally had a simple structure and been used for fundamental examination of stability and equilibria rather than providing practical guidance to managers. In this paper, a new agent for the study of competitive supply chain network dynamics is proposed. The novel features of the agent include the ability to select between competing vendors, distribute orders preferentially among many customers, manage production and inventory, and determine price based on competitive behaviour. The structure of the agent is related to existing business models and sufficient details are provided to allow implementation. The agent is tested to demonstrate that it recreates the main results of the existing modelling and management literature on supply chain dynamics. A brief exploration of competitive dynamics is given to confirm that the proposed agent can respond to competition. The results demonstrate that overall profitability for a supply chain network is maximised when businesses operate collectively. It is possible for an individual business to achieve higher profits by adopting a more competitive stance, but the consequence of this is that the overall profitability of the network is reduced. The agent will be of use for a broad range of studies on the long-run effect of management decisions on their network of suppliers and customers.
Resumo:
A design algorithm of an associative memory neural network is proposed. The benefit of this design algorithm is to make the designed associative memory model can implement the hoped situation. On the one hand, the designed model has realized the nonlinear association of infinite value pattern from n dimension space to m dimension space. The result has improved the ones of some old associative memory neural network. On the other hand, the memory samples are in the centers of the fault-tolerant. In average significance the radius of the memory sample fault-tolerant field is maximum.
Resumo:
We consider the question "How should one act when the only goal is to learn as much as possible?" Building on the theoretical results of Fedorov [1972] and MacKay [1992], we apply techniques from Optimal Experiment Design (OED) to guide the query/action selection of a neural network learner. We demonstrate that these techniques allow the learner to minimize its generalization error by exploring its domain efficiently and completely. We conclude that, while not a panacea, OED-based query/action has much to offer, especially in domains where its high computational costs can be tolerated.
Resumo:
BACKGROUND: The Affordable Care Act encourages healthcare systems to integrate behavioral and medical healthcare, as well as to employ electronic health records (EHRs) for health information exchange and quality improvement. Pragmatic research paradigms that employ EHRs in research are needed to produce clinical evidence in real-world medical settings for informing learning healthcare systems. Adults with comorbid diabetes and substance use disorders (SUDs) tend to use costly inpatient treatments; however, there is a lack of empirical data on implementing behavioral healthcare to reduce health risk in adults with high-risk diabetes. Given the complexity of high-risk patients' medical problems and the cost of conducting randomized trials, a feasibility project is warranted to guide practical study designs. METHODS: We describe the study design, which explores the feasibility of implementing substance use Screening, Brief Intervention, and Referral to Treatment (SBIRT) among adults with high-risk type 2 diabetes mellitus (T2DM) within a home-based primary care setting. Our study includes the development of an integrated EHR datamart to identify eligible patients and collect diabetes healthcare data, and the use of a geographic health information system to understand the social context in patients' communities. Analysis will examine recruitment, proportion of patients receiving brief intervention and/or referrals, substance use, SUD treatment use, diabetes outcomes, and retention. DISCUSSION: By capitalizing on an existing T2DM project that uses home-based primary care, our study results will provide timely clinical information to inform the designs and implementation of future SBIRT studies among adults with multiple medical conditions.
Resumo:
This paper presents a genetic algorithm for finding a constrained minimum spanning tree. The problem is of relevance in the design of minimum cost communication networks, where there is a need to connect all the terminals at a user site to a terminal concentrator in a multipoint (tree) configuration, while ensuring that link capacity constraints are not violated. The approach used maintains a distinction between genotype and phenotype, which produces superior results to those found using a direct representation in a previous study.