946 resultados para mycophenolic acid 2 morpholinoethyl ester
Resumo:
Purpose: To evaluate the potential of Lonicera macranthoids Hand. -Mazz. Yulei1 suspension culture system for enhanced production of the main secondary metabolite, chlorogenic acid. Methods: The callus of L. macranthoides Hand.-Mazz. “Yulei1” was suspension cultured in B5 liquid medium supplemented with different plant growth regulators. Biomass accumulation was calculated by weight method and chlorogenic acid production was measured using high performance liquid chromatography (HPLC). HPLC was carried out on C18 analytical column at 35 °C and the detection wavelength was set at 324 nm. Results: The results showed that maximum accumulation of biomass and chlorogenic acid were achieved 15 days after culture growth. The optimized conditions for biomass accumulation and chlorogenic acid production were 50 g/L of inoculum on fresh weight basis, B5 medium supplemented with plant growth regulators, 30 - 40 g/L sucrose and initial medium pH of 5.5. Maximum accumulation of chlorogenic acid and biomass were observed when the culture medium was supplemented with 2.0 mg/L6-BA. Optimal accumulation of chlorogenic acid was observed using combination of hormones 2.0 mg/L 6-Benzyladenine (BA) + 0.5 mg/L2, 4-Dichlorophenoxyacetic acid (2,4-D), while optimal accumulation of biomass was observed with 2.0 mg/L 6-BA + 2.0 mg/L2, 4-D. In addition, phenylalanine also contributed to the synthesis of chlorogenic acid at a concentration > 50 mg/L. Conclusion: Cell suspension cultures of L. macranthoides Hand.-Mazz. “Yulei1” have successfully been established. The findings provide a potential basis for large scale production of chlorogenic acid using cell suspension cultures of L. macranthoides.
Resumo:
Callus was initiated in three different ‘‘esculenta’’ taro cultivars by culturing corm slices in the dark on half-strength MS medium supplemented with 2.0 mg/l 2,4- dichlorophenoxyacetic acid (2,4-D) for 20 days followed by subculture of all corm slices to half-strength MS medium containing 1.0 mg/l thidiazuron (TDZ). Depending on the cultivar, 20–30% of corm slices produced compact, yellow, nodular callus on media containing TDZ. Histological studies revealed the presence of typical embryogenic cells which were small, isodiametric with dense cytoplasms. Somatic embryos formed when callus was transferred to hormone-free medium and *72% of the embryos germinated into plantlets on this medium. Simultaneous formation of roots and shoots during germination, and the presence of shoot and root poles revealed by histology, confirmed that these structures were true somatic embryos. Plants derived from somatic embryos appeared phenotypically normal following 2 months growth in a glasshouse. This method is a significant advance on those previously reported for the esculenta cultivars of taro due to its efficiency and reproducibility.
Resumo:
Chromatographic fingerprints of 46 Eucommia Bark samples were obtained by liquid chromatography-diode array detector (LC-DAD). These samples were collected from eight provinces in China, with different geographical locations, and climates. Seven common LC peaks that could be used for fingerprinting this common popular traditional Chinese medicine were found, and six were identified as substituted resinols (4 compounds), geniposidic acid and chlorogenic acid by LC-MS. Principal components analysis (PCA) indicated that samples from the Sichuan, Hubei, Shanxi and Anhui—the SHSA provinces, clustered together. The other objects from the four provinces, Guizhou, Jiangxi, Gansu and Henan, were discriminated and widely scattered on the biplot in four province clusters. The SHSA provinces are geographically close together while the others are spread out. Thus, such results suggested that the composition of the Eucommia Bark samples was dependent on their geographic location and environment. In general, the basis for discrimination on the PCA biplot from the original 46 objects× 7 variables data matrix was the same as that for the SHSA subset (36 × 7 matrix). The seven marker compound loading vectors grouped into three sets: (1) three closely correlating substituted resinol compounds and chlorogenic acid; (2) the fourth resinol compound identified by the OCH3 substituent in the R4 position, and an unknown compound; and (3) the geniposidic acid, which was independent of the set 1 variables, and which negatively correlated with the set 2 ones above. These observations from the PCA biplot were supported by hierarchical cluster analysis, and indicated that Eucommia Bark preparations may be successfully compared with the use of the HPLC responses from the seven marker compounds and chemometric methods such as PCA and the complementary hierarchical cluster analysis (HCA).
Resumo:
Embryogenic callus was initiated by culturing in vitro taro corm slices on agar-solidified half-strength MS medium containing 2.0 mg/L 2,4-dichlorophenoxyacetic acid (2,4-D) for 20 days followed by transfer to 1.0 mg/L thidiazuron (TDZ). Callus was subsequently proliferated on solid medium containing 1.0 mg/L TDZ, 0.5 mg/L 2,4- D and 800 mg/L glutamine before transfer to liquid medium containing the same components but with reduced glutamine (100 mg/L). After 3 months in liquid culture on an orbital shaker, cytoplasmically dense cell aggregates began to form. Somatic embryogenesis was induced by plating suspension cells onto solid media containing reduced levels of hormones (0.1 mg/L TDZ, 0.05 mg/L 2,4-D), high concentrations of sucrose (40–50 g/L) and biotin (1.0 mg/L). Embryo maturation and germination was then induced on media containing 0.05 mg/L benzyladenine (BA) and 0.1 mg/L indole-3-acetic acid (IAA). Histological studies of the developing embryos revealed the presence of typical shoot and root poles suggesting that these structures were true somatic embryos. The rate of somatic embryos formation was 500–3,000 per mL settledcell volume while approximately 60% of the embryos regenerated into plants.
Resumo:
The two-dimensional polymeric structures of the caesium complexes with the phenoxyacetic acid analogues (4-fluorophenoxy)acetic acid, (3-chloro-2-methylphenoxy)acetic acid and the herbicidally active (2,4-dichlorophenoxy)acetic acid (2,4-D), namely poly[[5-(4-fluorophenoxy)acetato][4-(4-fluorophenoxy)acetato]dicaesium], [Cs2(C8H6FO3)2]n, (I), poly[aqua[5-(3-chloro-2-methylphenoxy)acetato]caesium], [Cs(C9H8ClO3)(H2O)]n, (II), and poly[[7-(2,4-dichlorophenoxy)acetato][(2,4-dichlorphenoxy)acetic acid]caesium], [Cs(C8H5Cl2O3)(C8H6Cl2O3)]n, (III), are described. In (I), the Cs+ cations of the two individual irregular coordination polyhedra in the asymmetric unit (one CsO7 and the other CsO8) are linked by bridging carboxylate O-atom donors from the two ligand molecules, both of which are involved in bidentate chelate Ocarboxy,Ophenoxy interactions, while only one has a bidentate carboxylate O,O'-chelate interaction. Polymeric extension is achieved through a number of carboxylate O-atom bridges, with a minimum CsCs separation of 4.3231 (9) Å, giving layers which lie parallel to (001). In hydrated complex (II), the irregular nine-coordination about the Cs+ cation comprises a single monodentate water molecule, a bidentate Ocarboxy,Ophenoxy chelate interaction and six bridging carboxylate O-atom bonding interactions, giving a CsCs separation of 4.2473 (3) Å. The water molecule forms intralayer hydrogen bonds within the two-dimensional layers, which lie parallel to (100). In complex (III), the irregular centrosymmetric CsO6Cl2 coordination environment comprises two O-atom donors and two ring-substituted Cl-atom donors from two hydrogen bis[(2,4-dichlorophenoxy)acetate] ligand species in a bidentate chelate mode, and four O-atom donors from bridging carboxyl groups. The duplex ligand species lie across crystallographic inversion centres, linked through a short O-HO hydrogen bond involving the single acid H atom. Structure extension gives layers which lie parallel to (001). The present set of structures of Cs salts of phenoxyacetic acids show previously demonstrated trends among the alkali metal salts of simple benzoic acids with no stereochemically favourable interactive substituent groups for formation of two-dimensional coordination polymers.
Resumo:
The complexes, Ba (HQS) (H2O)(4) (HQS = 8-hydroxyquinoline-5-sulfonic acid) (1) and Ag (HIQS) (H2O) (Ferron = 7-iodo-8-hydroxyquinoline-5-sulfonic acid) (2) have been synthesized and characterized by X-ray diffraction analysis and spectroscopic studies. In compound 1, Ba2+ ion has a nine-coordinate monocapped antiprismatic geometry. In compound 2, Ag+ has distorted tetrahedral coordination and Ag center dot center dot center dot I interactions generate the supramolecular architectures. The complexes have been characterized by FT-IR and UV-Visible measurements. In both the structures, the inversion-related organic ligands are stacked over one another leading to three-dimensional networks.
Resumo:
Indole and its derivatives form a class of toxic recalcitrant environmental pollutants. The growth of Aspergillus niger was inhibited by very low concentrations (0.005 to 0.02%) of indole, even when 125- to 500-fold excess glucose was present in the medium. When 0.02% indole was added, the fungus showed a lag phase for about 30 h and the uptake of glucose was inhibited. Indole was metabolized by a new pathway via indoxyl (3-hydroxyindole), N-formylanthranilic acid, anthranilic acid,2,3-dihydroxybenzoic acid, and catechol, which was further degraded by ortho cleavage. The enzymes N-formylanthranilate deformylase, anthranilate hydroxylase, 2,3-dihydroxybenzoate decarboxylase, and catechol dioxygenase were induced by indole as early as after 5 h of growth, and their activities were demonstrated in a cell-free system.
Resumo:
A method for mass production of rosewood (Dalbergia latifolia Roxb.) trees through leaf disc organogenesis was developed and standardized. Compact callus was initiated from mature leaf discs on Murashige and Skoog (MS) basal medium supplemented with 1.0 mg 1?1 2,4-dichlorophenoxy acetic acid (2,4-D), 5.0 mg 1?1 ?-naphthaleneacetic acid (NAA), 1.0 mg 1?1 6-benzylaminopurine (BAP) and 10% coconut water (CW). High frequency (15�20 shoots/g callus) regeneration of shoot bud differentiation was obtained on MS (3/4 reduced major elements) or Woody Plant Medium (WPM) or modified Woody Plant Medium (mWPM) supplemented with BAP (5.0 mg 1?1) and NAA (0.5 mg 1?1). Leaf abscission and shoot tip necrosis was controlled using mWPM. About 90% of the excised shoots were rooted in the mWPM supplemented with 2.0 mg 1?1 ?-indolebutyric acid (IBA) and 1.0 mg 1?1 caffeic acid. The in vitro-raised rooted plantlets were hardened for successful transplantation to soil. The transplanted plants were exposed to various humidity conditions and 80% transplant success was achieved. The in vitro-raised leaf-regenerated plants grew normally and vigorously in soil.
Resumo:
Triterpenoids are pentacyclic secondary metabolites present in many terrestrial plants. Natural triterpenoids have been reported to exhibit anti-inflammatory and anti-carcinogenic activities. Here, we show that modifications of ring A of boswellic acid (2 cyano, 3 enone) resulted in a highly active growth inhibitory, anti-inflammatory, pro-differentiative and anti-tumour triterpenoid compound called cyano enone of methyl boswellates (CEMB). This compound showed cytotoxic activity on a number of cancer cell lines with IC50 ranging from 0.2 to 0.6 mu M. CEMB inhibits DNA synthesis and induces apoptosis in A549 cell line at 0.25 mu M and 1 mu M concentrations, respectively. CEMB induces adipogenic differentiation in 3T3-L1 cells at a concentration of 0.1 mu M. Finally, administration of CEMB intra-tumourally significantly inhibited the growth of C6 glioma tumour xenograft in immuno-compromised mice. Collectively, these results suggest that CEMB is a very potent anti-tumour compound.
Resumo:
A produção e a otimização de substâncias de valor medicinal têm sido alcançadas pelo uso das técnicas de cultura de tecidos vegetais, que têm apresentado grande relevância quando se considera o status de conservação de uma espécie ou sua ocorrência em ambientes ameaçados. No presente trabalho foi avaliada a produção de carotenoides em culturas de calos e células em suspensão de Cleome rosea Vahl ex DC, espécie nativa encontrada em áreas de restinga nos estados do Rio de Janeiro e de São Paulo. Plantas micropropagadas obtidas a partir de raízes produzidas in vitro foram usadas como fonte de explantes para o início das culturas de calos. A produção de massa calogênica foi avaliada em meio MS suplementado com diferentes concentrações das auxinas ácido 2,4-diclorofenoxiacético e ácido 4-amino- 3,5,6-tricloropicolínico, na presença de luz ou no escuro. O uso de diferentes meios básicos de cultura (B5, Nitsch, White) também foi avaliado. A calogênese foi induzida em todos os tratamentos, entretanto a maior produção de biomassa foi alcançada pelas culturas mantidas na presença de luz. A maior produção de massa calogênica foi obtida em culturas iniciadas no meio MS suplementado com 0,2 mg.L-1 de 2,4-D. A exposição das culturas à luz foi um fator essencial para a produção de carotenoides, que só ocorreu nas culturas mantidas nessa condição. Culturas de calos foram submetidas a tratamentos com substâncias elicitoras (extrato de levedura, metil jasmonato, quitosana) em diferentes concentrações e por um período de exposição de sete ou 14 dias visando otimizar a produção do pigmento. A maior produção de carotenoides nas culturas elicitadas foi alcançada com o tratamento com metil jasmonato (MJ) na concentração de 300 μM, independentemente do tempo de exposição ao elicitor. Análises cromatográficas mostraram que o processo de elicitação com MJ induziu ao aumento na produção de β-caroteno. Calos elicitados nessa condição foram usados para iniciar culturas de células em suspensão (CCS). Estas culturas foram acompanhadas por três subculturas realizadas a cada 20 dias, durante a fase exponencial de crescimento. Embora as CCS tenham mantido uma produção de biomassa constante ao longo das subculturas, os valores de produção de carotenoides foram inferiores àqueles alcançados pelas culturas de calos e não houve diferenças estatísticas significativas quando comparadas às CCS iniciadas a partir de calos não elicitados. Extratos de calos produzidos em meio MS suplementado com 0,2 mg.L-1 de 2,4-D foram avaliados quanto à sua capacidade antioxidante por meio da incubação dos extratos com DNA plasmidial em presença de cloreto estanoso (SnCl2), um potente agente redutor capaz de produzir quebras na molécula de DNA. Os extratos foram avaliados em concentrações crescentes (25 - 500 μg.mL-1) e apresentaram uma proteção dose dependente à ação do SnCl2. Estudos de toxicidade com o modelo de Artemia salina demonstraram que os extratos não apresentaram toxicidade nas concentrações avaliadas. Os resultados alcançados mostram que a elicitação foi eficiente para a otimização da produção de β-caroteno nas culturas in vitro e que os extratos obtidos a partir desses materiais apresentaram atividade antioxidante, indicando o êxito das técnicas de cultura de tecidos para a produção deste metabólito sob condição in vitro.
Resumo:
The acetone extract of Dicranopteris dichotoma afforded two new tetranorclerodanes, 18-hydroxyaylthonic acid (1) and 18-oxo-aylthonic acid (2), and four new clerodane-type diterpene glycosides, (6S,13S)-6-O-[6-O-acetyl-beta-D-glucopyranosyl-(1 -> 4)-alpha
Resumo:
The specific recognition between monoclonal antibody (anti-human prostate-specific antigen, anti-hPSA) and its antigen (human prostate-specific antigen, hPSA) has promising applications in prostate cancer diagnostics and other biosensor applications. However, because of steric constraints associated with interfacial packing and molecular orientations, the binding efficiency is often very low. In this study, spectroscopic ellipsometry and neutron reflection have been used to investigate how solution pH, salt concentration and surface chemistry affect antibody adsorption and subsequent antigen binding. The adsorbed amount of antibody was found to vary with pH and the maximum adsorption occurred between pH 5 and 6, close to the isoelectric point of the antibody. By contrast, the highest antigen binding efficiency occurred close to the neutral pH. Increasing the ionic strength reduced antibody adsorbed amount at the silica-water interface but had little effect on antigen binding. Further studies of antibody adsorption on hydrophobic C8 (octyltrimethoxysilane) surface and chemical attachment of antibody on (3-mercaptopropyl)trimethoxysilane/4-maleimidobutyric acid N-hydroxysuccinimide ester-modified surface have also been undertaken. It was found that on all surfaces studied, the antibody predominantly adopted the 'flat on' orientation, and antigen-binding capabilities were comparable. The results indicate that antibody immobilization via appropriate physical adsorption can replace elaborate interfacial molecular engineering involving complex covalent attachments.
Resumo:
Embryogenic calli of Kentucky bluegrass, named Md, were induced from mature seeds and embryos, and proliferated on medium K3 containing 2,4-dichlorophenoxyacetic acid (2,4-D, 10.0 mumol/L), 6-benzylaminopurine (BAR, 0.5 mumol/L) and K5 which was the K3 medium supplemented with cupric sulfa (0.5 mumol/L) under dim-light condition (20-30 mumol.m(-2).s-1, 16 h light) at 24 degreesC. Embryogenic calli were transformed with plasmids pDM805 Carring bar and gus genes, Which was mediated by an Agrobacterium strain AGL1, four transgenic lines were obtained. The important factors that affect the transformation efficiency and obtain desirable number of transgenic plants included: (1) the quality of embryogenic calli; (2) light condition and time of co-cultivation; (3) concentration of antibiotics used for suppressing the overgrowth of Agrobacterium in the course of transformed plant regeneration; (4) selection pressure, etc. The micro nutrient of cupric had significant influence on the quality of embryogenic calli. This presentation is the first successful protocol of Kentucky bluegrass transformation mediated by Agrobacterium.
Resumo:
Langmuir-Blodgett (LB) films of octadecylammonium octadecanoate (C(18)H(37)j7NH(3)(+)C(17)H(35)COO(-),ODASA) and octadecylammonium octadecanoate-d(35) (C18H37+NH3+C17D35COO-, ODASA-d(53)) were prepared and their thermal behaviors were investigated by variable-temperature Fourier transform infrared transmission spectroscopy. It was found that the two hydrocarbon chains of ODASA molecule in LB films are highly ordered while that protonated (H) chain in ODASA-d(35) is partially disordered with some gauche conformers introduced at room temperature.
Resumo:
In order to explore new highly organic electroluminescent materials, six symmetrical aromatic oxide-oxadiazoles containing pyridine ring 4a similar to 4f were synthesized through cyclization of substituted benzoic acid (2) with 2,6-dihydrazide pyridine (3) by "one-pot" method in POCl3. Their structures were confirmed by MS, IR, H-1 NMR techniques and elemental analysis. The fluorescence spectra of the target compounds showed that the A,m ranged from 347 to 507 nm, and the maximum A,m were close to 384 nm, which showed that these compounds have good fluorescence with strong fluorescence intensity. When the 5-Br group was introduced into the aromatic ring (4e and 4f), the fluorescent emission wavelength took place Einstein shift, and the fluorescent intensity decreased a little. Using quinine bisulphate as a reference, the fluorescence quantum yields were all tested, and the introduction of 5-Br group had no visible effect on fluorescence quantum yield.