993 resultados para morphometric data


Relevância:

30.00% 30.00%

Publicador:

Resumo:

The genus Hinia is divided in 4 subgenera; other subgenera are not represented in the area studied. It was possible to find criteria for a better discrimination of the highly variable species H. (Hinia) schlotheimi and H. (Hinia) turbinella. The species "fuchsi" has been placed in the synonymy of H. (Hinia) turbinella. The species H. (Hinia) schlotheimi (BEYRICH) and H. (Telasco) schroederi (KAUTSKY) have been united under the name H. (Hinia) schlotheimi. The easily distinguishable species H. (Tritonella) tenuistriata and H. (Hinia) sulcata belong to two different genera. H. (Tritonella) cimbrica andersoni of the Viol- and Katzheide-Beds (Reinbek-stage) is separable from the population found in the Hemmoor-stage, it turned out to be a valuable guide subspecies for the Reinbek-stage. The species H. (Tritonella) serraticosta, H. (Tritonella) catulli, H. (Hinia) holsatica, and H. (Telasco) syltensis are all similar in respect to shape and ornamentation. Criteria have been found for a better discrimination of these species. The species contabulata, effusa and seminodifera described by SPEYER (1864), turned out to be contogenetic stages of H. (Tritonella) pygmaea. H. (Tritonella) cavata, previously described from the Tertiary of the North sea area, was proven to be absent from the area investigated. The forms described under that name, belong to H. (Tritonella) woodwardi.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Mass estimates for Late Miocene and Pliocene (8.6-3.25 Ma) Discoaster species and Sphenolithus are determined using samples of the equatorial Atlantic (Ceara Rise: ODP Site 927). Based on morphometric measurements, 3D computer models were created for 11 Discoaster species and their volumes calculated. From these, shape factors (ks) were derived to allow calculation of mass for different-sized discoasters and Sphenolithus abies. The mass estimates were then used to calculate the contribution of nannofossils to the total nannofossil carbonate. The discoaster contribution ranges from 10% to 40%, with a decreasing trend through the investigated interval. However, our estimates of total nannofossil carbonate from size-corrected abundance data are consistently 30-50% lower than estimates from grain-size measurement; this suggests that data based on mass estimates need to be interpreted with caution.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Understanding the evolutionary history of threatened populations can improve their conservation management. Re-establishment of past but recent gene flow could re-invigorate threatened populations and replenish genetic diversity, necessary for population persistence. One of the four nominal subspecies of the common yellow-tufted honeyeater, Lichenostomus melanops cassidix, is critically endangered despite substantial conservation efforts over 55 years. Using a combination of morphometric, genetic and modelling approaches we tested for its evolutionary distinctiveness and conservation merit. We confirmed that cassidix has at least one morphometric distinction. It also differs genetically from the other subspecies in allele frequencies but not phylogenetically, implying that its evolution was recent. Modelling historical distribution supported the lack of vicariance and suggested a possibility of gene flow among subspecies at least since the late Pleistocene. Multi-locus coalescent analyses indicated that cassidix diverged from its common ancestor with neighbouring subspecies gippslandicus sometime from the mid-Pleistocene to the Holocene, and that it has the smallest historical effective population size of all subspecies. It appears that cassidix diverged from its ancestor with gippslandicus through a combination of drift and local selection. From patterns of genetic subdivision on two spatial scales and morphological variation we concluded that cassidix, gippslandicus and (melanops + meltoni) are diagnosable as subspecies. Low genetic diversity and effective population size of cassidix may translate to low genetic fitness and evolutionary potential, thus managed gene flow from gippslandicus is recommended for its recovery.