909 resultados para molecular dynamics simulation


Relevância:

100.00% 100.00%

Publicador:

Resumo:

The pressure dependence of the glass-transition temperature, T(g)(P), of the ionic glass-former 2Ca(NO(3))(2) center dot 3KNO(3), CKN, has been obtained by molecular dynamics (MD) simulations The liquid-glass difference of thermal expansivity, Delta alpha, heat capacity, Delta C(p), and isothermal compressibility, Delta kappa, have been calculated as a function of pressure. It has been found that the Ehrenfest relation dT(g)/dP = TV Delta alpha/Delta C(p) predicts the pressure dependence of T, but the other Ehrenfest relation, dT(g)/dP = Delta kappa/Delta alpha, does not. Consequently, the Prigogine-Defay ratio, Pi = Delta C(p)Delta kappa/TV Delta alpha(2), is Pi similar to 1.2 at low pressures, but increases 1 order of magnitude at high pressures. The pressure dependence of the Prigogine-Defay ratio is interpreted in light of recent explanations for the finding Pi > 1.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Snake venom metalloproteases (SVMPs) embody zinc-dependent multidomain enzymes responsible for a relevant pathophysiology in envenomation. including local and systemic hemorrhage. The molecular features responsible for hemorrhagic potency of SVMPs have been associated with their multidomains structures which can target these proteins them to several receptors of different tissues and cellular types. BjussuMP-I. a SVMP isolated from the Bothrops jararacussu venom, has been characterized as a P-III hemorrhagic metalloprotease. The complete cDNA sequence of BjussuMP-I with 1641bp encodes open reading frames of 547 amino acid residues, which conserve the common domains of P-III high molecular weight hemorrhagic metalloproteases: (i) pre-pro-peptide, (ii) metalloprotease, (iii) disintegrin-like and (iv) rich cysteine domain. BjussuMP-I induced lyses in fibrin clots and inhibited collagen- and ADP-induced platelet aggregation. We are reporting, for the first time, the primary structure of an RGD-P-III class snake venom metalloprotease. A phylogenetic analysis of the BjussuMP-1 metalloprotease/catalytic domain was performed to get new insights into the molecular evolution of the metalloproteases. A theoretical molecular model of this domain was built through folding recognition (threading) techniques and refined by molecular dynamics simulation. Then, the final BjussuMP-I catalytic domain model was compared to other SVMPs and Reprolysin family proteins in order to identify eventual structural differences, which could help to understand the biochemical activities of these enzymes. The presence of large hydrophobic areas and some conserved surface charge-positive residues were identified as important features of the SVMPs and other metalloproteases. (C) 2006 Elsevier B.V. All rights reserved.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

In this work molecular dynamics simulations were performed to reproduce the kinetic and thermodynamic transformations occurring during melt crystallization, vitrification, and glass crystallization (devitrification) of PbF2. Two potential parameters were analyzed in order to access the possibility of modeling these properties. These interionic potentials are models developed to describe specific characteristic of PbF2, and thermodynamic properties were well reproduced by one of them, while the other proved well adapted to simulate the crystalline structure of this fluoride. By a modeled nonisothermal heat treatment of the glass, it was shown that the devitrification of a cubic structure in which the Pb-Pb distances are in good agreement with theory and experiment. (C) 2002 American Institute of Physics.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The C 2 * radical is used as a system probe tool to the reactive flow diagnostic, and it was chosen due to its large occurrence in plasma and combustion in aeronautics and aerospace applications. The rotational temperatures of C 2 * species were determined by the comparison between experimental and theoretical data. The simulation code was developed by the authors, using C++ language and the object oriented paradigm, and it includes a set of new tools that increase the efficacy of the C 2 * probe to determine the rotational temperature of the system. A brute force approach for the determination of spectral parameters was adopted in this version of the computer code. The statistical parameter c 2 was used as an objective criterion to determine the better match of experimental and synthesized spectra. The results showed that the program works even with low-quality experimental data, typically collected from in situ airborne compact apparatus. The technique was applied to flames of a Bunsen burner, and the rotational temperature of ca. 2100 K was calculated.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Unzipping carbon nanotubes (CNTs) is considered one of the most promising approaches for the controlled and large-scale production of graphene nanoribbons (GNR). These structures are considered of great importance for the development of nanoelectronics because of its dimensions and intrinsic nonzero band gap value. Despite many years of investigations some details on the dynamics of the CNT fracture/unzipping processes remain unclear. In this work we have investigated some of these process through molecular dynamics simulations using reactive force fields (ReaxFF), as implemented in the Large-scale Atomic/Molecular Massively Parallel Simulator (LAMMPS) code. We considered multi-walled CNTs of different dimensions and chiralities and under induced mechanical stretching. Our preliminary results show that the unzipping mechanisms are highly dependent on CNT chirality. Well-defined and distinct fracture patterns were observed for the different chiralities. Armchair CNTs favor the creation of GNRs with well-defined armchair edges, while zigzag and chiral ones produce GNRs with less defined and defective edges. © 2012 Materials Research Society.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Carbon nanoscrolls (graphene layers rolled up into papyrus-like tubular structures) are nanostructures with unique and interesting characteristics that could be exploited to build several new nanodevices. However, an efficient and controlled synthesis of these structures was not achieved yet, making its large scale production a challenge to materials scientists. Also, the formation process and detailed mechanisms that occur during its synthesis are not completely known. In this work, using fully atomistic molecular dynamics simulations, we discuss a possible route to nanoscrolls made from graphene layers deposited over silicon oxide substrates containing chambers/pits. The scrolling mechanism is triggered by carbon nanotubes deposited on the layers. The process is completely general and can be used to produce scrolls from other lamellar materials, like boron nitride, for instance. © 2013 American Institute of Physics.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Pós-graduação em Biofísica Molecular - IBILCE

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Using an effective two-body interaction potential, a molecular dynamics study of the structural properties of amorphous ZrF4 phase is presented. The effective pair potential includes steric repulsion, Coulomb interaction due to charge transfer, and charge-dipole interaction due to the large electronic polarizability of anions. The results for structural correlations, such as pair distribution functions, coordination numbers, and bond angle distributions are presented. Excellent agreement is obtained by comparing experimental X-ray diffraction and the simulated static X-ray structure factor. © 1993.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Porphyrin derivatives have applications as photoactive drugs in photodynamic therapy. However, little is known about their interactions with phospholipid membranes at the molecular level. We employed molecular dynamics simulations to model the binding between a series of cationic meso-(N-methyl-4-pyridinium)phenylporphyrins and anionic phosphatidylglycerol lipid bilayers. This was done in the presence of molecular oxygen within the membrane. The ability of various porphyrins to cause photodamage was quantified in terms of their immersion depth and degree of exposition to a higher oxygen concentration inside the membrane. Simulations showed that the photodynamic efficiency could be improved as the number of hydrophobic phenyl substituents attached to the porphyrinic ring increased. In the specific case of porphyrins containing two hydrophobic and two charged substituents, the cis isomer was significantly more efficient than the trans. These results correlate well with previous experimental observations. They highlight the importance of both the total charge and amphiphilicity of the photosensitizer for its performance in photodynamic therapy.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This paper uses Nuclear Magnetic Resonance (NMR) and Differential Scanning Calorimetry (DSC) techniques to study the molecular relaxations and phase transitions in poly(9,9-di-n-octylfluorene-alt-benzothiadiazole) (F8BT), which has been extensively studied as the active thin film in organic devices. Besides the identification of the glass transition, beta relaxation and crystal-to-crystal phase transition, we correlate such phenomena with dielectric and transport mechanisms in diodes with F8BT as the active layer. The beta relaxation has been assigned to a transition at about 210 K measured by H-1 and C-13 solid state NMR, and can be attributed to local motions in the side chains. The glass transition has been detected by DSC and H-1 NMR. Dielectric spectroscopy (DS) carried out at low frequencies on diodes made from F8BT show two peaks which are coincident with the above transitions. This allowed us to correlate the electrical changes in the film with the onset of specific molecular motions. In addition, DS indicates a third peak related with a crystal-to-crystal phase transition. Finally, these transitions were correlated with changes in the carrier mobility recorded in thin films and published recently.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Molecular dynamics computer simulations have been performed to identify preferred positions of the fluorescent probe PRODAN in a fully hydrated DLPC bilayer in the fluid phase. In addition to the intramolecular charge-transfer first vertical excited state, we considered different charge distributions for the electronic ground state of the PRODAN molecule by distinct atomic charge models corresponding to the probe molecule in vacuum as well as polarized in a weak and a strong dielectric solvent (cyclohexane and water). Independent on the charge distribution model of PRODAN, we observed a preferential orientation of this molecule in the bilayer with the dimethylamino group pointing toward the membrane's center and the carbonyl oxygen toward the membrane's interface. However, changing the charge distribution model of PRODAN, independent of its initial position in the equilibrated DLPC membrane, we observed different preferential positions. For the ground state representation without polarization and the in-cyclohexane polarization, the probe maintains its position close to the membrane's center. Considering the in-water polarization model, the probe approaches more of the polar headgroup region of the bilayer, with a strong structural correlation with the choline group, exposing its oxygen atom to water molecules. PRODAN's representation of the first vertical excited state with the in-water polarization also approaches the polar region of the membrane with the oxygen atom exposed to the bilayer's hydration shell. However, this model presents a stronger structural correlation with the phosphate groups than the ground state. Therefore, we conclude that the orientation of the PRODAN molecule inside the DLPC membrane is well-defined, but its position is very sensitive to the effect of the medium polarization included here by different models for the atomic charge distribution of the probe.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

In this study, Cross-Polarization Magic-angle Spinning CP/MAS, 2D Exchange, Centerband-Only Detection of Exchange (CODEX), and Separated-Local-Field (SLF) NMR experiments were used to study the molecular dynamics of poly(ethylene glycol) (PEG) inside Hectorite/PEG intercalation compounds in both single- and double-layer configurations. The results revealed that the overall amplitude of the motions of the PEG chain in the single-layer configuration is considerably smaller than that observed for the double-layer intercalation compound. This result indicates that the effect of having the polymer chain interacting with both clay platelets is to produce a substantial decrease in the motional amplitudes of those chains. The presence of these dynamically restricted segments might be explained by the presence of anchoring points between the clay platelets and the PEG oxygen atoms, which was induced by the Na+ cations. By comparing the PEG motional amplitudes of the double-layered nanocomposites composed of polymers with different molecular weights, a decrease in the motional amplitude for the smaller PEG chain was observed, which might also be understood using the presence of anchoring points.