879 resultados para mitochondrial MnSOD(mMnSOD)
Resumo:
Genetic variability of a population of Aedes aegypti from Paraná, Brazil, using the mitochondrial ND4 gene. To analyze the genetic variability of populations of Aedes aegypti, 156 samples were collected from 10 municipalities in the state of Paraná, Brazil. A 311 base pairs (bp) region of the NADH dehydrogenase subunit 4 (ND4) mitochondrial gene was examined. An analysis of this fragment identified eight distinct haplotypes. The mean genetic diversity was high (h = 0.702; p = 0.01556). AMOVA analysis indicated that most of the variation (67%) occurred within populations and the F ST value (0.32996) was highly significant. F ST values were significant in most comparisons among cities. The isolation by distance was not significant (r = -0.1216 and p = 0, 7550), indicating that genetic distance is not related to geographic distance. Neighbor-joining analysis showed two genetically distinct groups within Paraná. The DNA polymorphism and AMOVA data indicate a decreased gene flow in populations from Paraná, which can result in increased vectorial competence.
Resumo:
Mitochondria have a fundamental role in the transduction of energy from food into ATP. The coupling between food oxidation and ATP production is never perfect, but may nevertheless be of evolutionary significance. The 'uncoupling to survive' hypothesis suggests that 'mild' mitochondrial uncoupling evolved as a protective mechanism against the excessive production of damaging reactive oxygen species (ROS). Because resource allocation and ROS production are thought to shape animal life histories, alternative life-history trajectories might be driven by individual variation in the degree of mitochondrial uncoupling. We tested this hypothesis in a small bird species, the zebra finch (Taeniopygia guttata), by treating adults with the artificial mitochondrial uncoupler 2,4-dinitrophenol (DNP) over a 32-month period. In agreement with our expectations, the uncoupling treatment increased metabolic rate. However, we found no evidence that treated birds enjoyed lower oxidative stress levels or greater survival rates, in contrast to previous results in other taxa. In vitro experiments revealed lower sensitivity of ROS production to DNP in mitochondria isolated from skeletal muscles of zebra finch than mouse. In addition, we found significant reductions in the number of eggs laid and in the inflammatory immune response in treated birds. Altogether, our data suggest that the 'uncoupling to survive' hypothesis may not be applicable for zebra finches, presumably because of lower effects of mitochondrial uncoupling on mitochondrial ROS production in birds than in mammals. Nevertheless, mitochondrial uncoupling appeared to be a potential life-history regulator of traits such as fecundity and immunity at adulthood, even with food supplied ad libitum.
Resumo:
Mitochondrial fusion and fission is a dynamic process critical for the maintenance of mitochondrial function and cell viability. During excitotoxicity neuronal mitochondria are fragmented, but the mechanism underlying this process is poorly understood. Here, we show that Mfn2 is the only member of the mitochondrial fusion/fission machinery whose expression is reduced in in vitro and in vivo models of excitotoxicity. Whereas in cortical primary cultures, Drp1 recruitment to mitochondria plays a primordial role in mitochondrial fragmentation in an early phase that can be reversed once the insult has ceased, Mfn2 downregulation intervenes in a delayed mitochondrial fragmentation phase that progresses even when the insult has ceased. Downregulation of Mfn2 causes mitochondrial dysfunction, altered calcium homeostasis, and enhanced Bax translocation to mitochondria, resulting in delayed neuronal death. We found that transcription factor MEF2 regulates basal Mfn2 expression in neurons and that excitotoxicity-dependent degradation of MEF2 causes Mfn2 downregulation. Thus, Mfn2 reduction is a late event in excitotoxicity and its targeting may help to reduce excitotoxic damage and increase the currently short therapeutic window in stroke.
Resumo:
Brain activity is energetically costly and requires a steady and highly regulated flow of energy equivalents between neural cells. It is believed that a substantial share of cerebral glucose, the major source of energy of the brain, will preferentially be metabolized in astrocytes via aerobic glycolysis. The aim of this study was to evaluate whether uncoupling proteins (UCPs), located in the inner membrane of mitochondria, play a role in setting up the metabolic response pattern of astrocytes. UCPs are believed to mediate the transmembrane transfer of protons, resulting in the uncoupling of oxidative phosphorylation from ATP production. UCPs are therefore potentially important regulators of energy fluxes. The main UCP isoforms expressed in the brain are UCP2, UCP4, and UCP5. We examined in particular the role of UCP4 in neuron-astrocyte metabolic coupling and measured a range of functional metabolic parameters including mitochondrial electrical potential and pH, reactive oxygen species production, NAD/NADH ratio, ATP/ADP ratio, CO2 and lactate production, and oxygen consumption rate. In brief, we found that UCP4 regulates the intramitochondrial pH of astrocytes, which acidifies as a consequence of glutamate uptake, with the main consequence of reducing efficiency of mitochondrial ATP production. The diminished ATP production is effectively compensated by enhancement of glycolysis. This nonoxidative production of energy is not associated with deleterious H2O2 production. We show that astrocytes expressing more UCP4 produced more lactate, which is used as an energy source by neurons, and had the ability to enhance neuronal survival.
Resumo:
BACKGROUND: A point mutation at the locus 3243 of the mitonchondrial DNA (mtDNA) is associated with either the MIDD syndrome (maternally inherited diabetes, deafness), the MELAS syndrome (myopathy, encephalitis, lactic acidosis, stroke) or cardiac, digestive, endocrine or exocrine dysfunctions. We report a peculiar maculopathy in two patients with an mtDNA 3243 mutation. HISTORY AND SIGNS: Case 1: A visually asymptomatic 40-year-old woman was examined for screening of diabetic retinopathy. Visual acuity was 10 / 10 in both eyes. Case 2: A 54-year-old woman with deafness and diabetes complained of visual loss. Visual acuity was 6 / 10 for the right eye and 0.5 / 10 for the left eye. Both patients exhibited a chorioretinal areolar atrophy. Case 1 was followed over 15 years and exhibited a slow progression of the maculopathy with moderate loss of visual acuity to 6 / 10 in both eyes, but marked handicap from the annular scotoma. THERAPY AND OUTCOME: None. CONCLUSION: Both patients presented a perimacular annular retinal atrophy. Patients harbouring mtDNA 3243 mutation should be examined for the presence of a maculopathy, even if they are asymptomatic. Conversely, the finding of such a geographic maculopathy should suggest the possibility of a point mutation at the locus 3243 of the mitochondrial DNA, especially in the presences of diabetes mellitus and/or deafness
Resumo:
Retinoblastoma is the most common pediatric intraocular neoplasm. While retinoblastoma development requires the inactivation of both alleles of the retinoblastoma tumor suppressor gene (RB1) in the developing retina, additional genomic changes are involved in tumor progression, which progressively lead to resistance of tumor cells to death. Therapeutics acting at very downstream levels of death signaling pathways should therefore be interesting in killing retinoblastoma cells. The BH3-only proteins promote apoptosis by modulating the interaction between the pro- and antiapoptotic members of the BCL2 protein family, and this effect can be recapitulated by the BH3 domains. This report analyzes the effect of various BH3 peptides, corresponding to different BH3-only proteins, on two retinoblastoma cell lines, Y79 and WERI-Rb, as well as on the photoreceptor cell line 661W. The BH3 peptide BIRO1, derived from the BCL2L11 death domain, was very effective in promoting Y79 and WERI-Rb cell death without affecting the 661W photoreceptor cells. This cell death was efficient even in absence of BAX and was shown to be caspase independent. While ROS production or AIF release was not detected from mitochondria of treated cells, BIRO1 initiated mitochondria fragmentation in a short period of time following treatment. IMPLICATIONS: The BIRO1 peptide is highly effective at killing retinoblastoma cells and has potential as a peptidomimetic.
Resumo:
The mitochondrial 70-kDa heat shock protein (mtHsp70), also known in humans as mortalin, is a central component of the mitochondrial protein import motor and plays a key role in the folding of matrix-localized mitochondrial proteins. MtHsp70 is assisted by a member of the 40-kDa heat shock protein co-chaperone family named Tid1 and a nucleotide exchange factor. Whereas, yeast mtHsp70 has been extensively studied in the context of protein import in the mitochondria, and the bacterial 70-kDa heat shock protein was recently shown to act as an ATP-fuelled unfolding enzyme capable of detoxifying stably misfolded polypeptides into harmless natively refolded proteins, little is known about the molecular functions of the human mortalin in protein homeostasis. Here, we developed novel and efficient purification protocols for mortalin and the two spliced versions of Tid1, Tid1-S, and Tid1-L and showed that mortalin can mediate the in vitro ATP-dependent reactivation of stable-preformed heat-denatured model aggregates, with the assistance of Mge1 and either Tid1-L or Tid1-S co-chaperones or yeast Mdj1. Thus, in addition of being a central component of the protein import machinery, human mortalin together with Tid1, may serve as a protein disaggregating machine which, for lack of Hsp100/ClpB disaggregating co-chaperones, may carry alone the scavenging of toxic protein aggregates in stressed, diseased, or aging human mitochondria.
Resumo:
Exome sequencing of an individual with congenital cataracts, hypertrophic cardiomyopathy, skeletal myopathy, and lactic acidosis, all typical symptoms of Sengers syndrome, discovered two nonsense mutations in the gene encoding mitochondrial acylglycerol kinase (AGK). Mutation screening of AGK in further individuals with congenital cataracts and cardiomyopathy identified numerous loss-of-function mutations in an additional eight families, confirming the causal nature of AGK deficiency in Sengers syndrome. The loss of AGK led to a decrease of the adenine nucleotide translocator in the inner mitochondrial membrane in muscle, consistent with a role of AGK in driving the assembly of the translocator as a result of its effects on phospholipid metabolism in mitochondria.
Resumo:
Significance: Current lifestyles with high-energy diets and little exercise are triggering an alarming growth in obesity. Excess of adiposity is leading to severe increases in associated pathologies, such as insulin resistance, type 2 diabetes, atherosclerosis, cancer, arthritis, asthma, and hypertension. This, together with the lack of efficient obesity drugs, is the driving force behind much research. Recent Advances: Traditional anti-obesity strategies focused on reducing food intake and increasing physical activity. However, recent results suggest that enhancing cellular energy expenditure may be an attractive alternative therapy. Critical Issues: This review evaluates recent discoveries regarding mitochondrial fatty acid oxidation (FAO) and its potential as a therapy for obesity. We focus on the still controversial beneficial effects of increased FAO in liver and muscle, recent studies on how to potentiate adipose tissue energy expenditure, and the different hypotheses involving FAO and the reactive oxygen species production in the hypothalamic control of food intake. Future Directions: The present review aims to provide an overview of novel anti-obesity strategies that target mitochondrial FAO and that will definitively be of high interest in the future research to fight against obesity-related disorders. Antioxid. Redox Signal. 00, 000000.
Resumo:
Increased production of reactive oxygen species (ROS) in mitochondria underlies major systemic diseases, and this clinical problem stimulates a great scientific interest in the mechanism of ROS generation. However, the mechanism of hypoxia-induced change in ROS production is not fully understood. To mathematically analyze this mechanism in details, taking into consideration all the possible redox states formed in the process of electron transport, even for respiratory complex III, a system of hundreds of differential equations must be constructed. Aimed to facilitate such tasks, we developed a new methodology of modeling, which resides in the automated construction of large sets of differential equations. The detailed modeling of electron transport in mitochondria allowed for the identification of two steady state modes of operation (bistability) of respiratory complex III at the same microenvironmental conditions. Various perturbations could induce the transition of respiratory chain from one steady state to another. While normally complex III is in a low ROS producing mode, temporal anoxia could switch it to a high ROS producing state, which persists after the return to normal oxygen supply. This prediction, which we qualitatively validated experimentally, explains the mechanism of anoxia-induced cell damage. Recognition of bistability of complex III operation may enable novel therapeutic strategies for oxidative stress and our method of modeling could be widely used in systems biology studies.
Resumo:
Highly-active antiretroviral therapy (HAART) can induce a characteristic lipodystrophy syndrome characterized by peripheral fat wasting and central adiposity, usually associated with hyperlipidaemia and insulin resistance [1,2]. Indirect data have led some authors to propose that mitochondrial dysfunction could play a role in this syndrome [3,4].To date, as recently outlined by Kakuda et al. [5] in this journal, HIV-infected patients developing lipodystrophy have not been studied for mitochondrial changes or respiratory chain capacity...
Resumo:
BACKGROUND: Complete mitochondrial genome sequences have become important tools for the study of genome architecture, phylogeny, and molecular evolution. Despite the rapid increase in available mitogenomes, the taxonomic sampling often poorly reflects phylogenetic diversity and is often also biased to represent deeper (family-level) evolutionary relationships. RESULTS: We present the first fully sequenced ant (Hymenoptera: Formicidae) mitochondrial genomes. We sampled four mitogenomes from three species of fire ants, genus Solenopsis, which represent various evolutionary depths. Overall, ant mitogenomes appear to be typical of hymenopteran mitogenomes, displaying a general A+T-bias. The Solenopsis mitogenomes are slightly more compact than other hymentoperan mitogenomes (~15.5 kb), retaining all protein coding genes, ribosomal, and transfer RNAs. We also present evidence of recombination between the mitogenomes of the two conspecific Solenopsis mitogenomes. Finally, we discuss potential ways to improve the estimation of phylogenies using complete mitochondrial genome sequences. CONCLUSIONS: The ant mitogenome presents an important addition to the continued efforts in studying hymenopteran mitogenome architecture, evolution, and phylogenetics. We provide further evidence that the sampling across many taxonomic levels (including conspecifics and congeners) is useful and important to gain detailed insights into mitogenome evolution. We also discuss ways that may help improve the use of mitogenomes in phylogenetic analyses by accounting for non-stationary and non-homogeneous evolution among branches.
Resumo:
Le syndrome métabolique (SM) associe dyslipidémie, hypertension, intolérance au glucose, état pro-inflammatoire/prothrombotique et surpoids, dont nous vous présentons une hypothèse physiopathologique émergente. Des recherches récentes ont montré que des dysfonctions mitochondriales induisent l'accumulation intracellulaire d'acylCoA et de diacylglycérol, inactivant la signalisation de l'insuline par un effet direct sur les transporteurs du glucose insulino-dépendants. Un défaut de la phosphorylation oxydative conduirait à l'insulino-résistance. Des atteintes de la fonction mitochondriale sont présentes dans le muscle, le foie, le pancréas et les vaisseaux sanguins et contribuent aux manifestations cliniques. Ces observations des atteintes mitochondriales nous montrent un lien entre la clinique et la physiopathologie du SM. The metabolic syndrome is a cluster of metabolic risk factors including: atherogenic dyslipidemia, elevated blood pressure, high plasma glucose and a prothrombotic and proinflammatory state, frequently associated to overweight. Impaired cell metabolism has been suggested as a relevant pathophysiological process. Indeed, the accumulation of intracellular fatty acylCoA and diacylglycerol, which then activate critical signal transduction pathways that ultimatly lead to suppression of insulin signalisation. Therefore a defect in mitochondrial function may be responsible for insulin resistance. Moreover, mitochondrial dysfunction has been found to take place in organs such as skeletal muscle, liver, pancreas and smoth vascular cells suggesting that mitochondrial defect could play a critical role in the occurence of cardiovascular diseases.
Resumo:
The distribution of mitochondrial control region-sequence polymorphism was investigated in 15 populations of Crocidura russula along an altitudinal gradient in western Switzerland. High-altitude populations are smaller, sparser and appear to undergo frequent bottlenecks. Accordingly, they showed a loss of rare haplotypes, but unexpectedly, were less differentiated than lowland populations. Furthermore, the major haplotypes segregated significantly with altitude. The results were inconsistent with a simple model of drift and dispersal. They suggested instead a role for historical patterns of colonization, or, alternatively, present-day selective forces acting on one of the mitochondrial genes involved in metabolic pathways.