864 resultados para mining boom


Relevância:

20.00% 20.00%

Publicador:

Resumo:

En aquest article es presenten breument els diferents capítols d’un treball interdisciplinari per tal d’entendre el context de prohibició de la mineria de ferro a Goa a finals del 2012 i proporcionar la informació necessària per tal d’orientar i gestionar la presa de decisions sobre l’activitat minera en un futur. Els sis primers capítols consisteixen en l’estudi del medi abiòtic, medi biòtic, fluxos de materials, aspectes socials, aspectes econòmics i finalment aspectes polítics. En canvi, en els dos últims capítols s'avaluen i es gestionen els impactes ambientals de la mineria mitjançant, per una banda, una anàlisi DPSIR i, d'altra banda, es proposen tres escenaris per integrar les diferents variables i fomentar la participació en la presa de decisions. S’ha dut a terme una extensa recerca mitjançant la recopilació de dades, entrevistes i visites a les zones d’estudi d’interès per tal d’entendre el conflicte de la mineria a Goa.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The main objective of this Master Thesis is to discover more about Girona’s image as a tourism destination from different agents’ perspective and to study its differences on promotion or opinions. In order to meet this objective, three components of Girona’s destination image will be studied: attribute-based component, the holistic component, and the affective component. It is true that a lot of research has been done about tourism destination image, but it is less when we are talking about the destination of Girona. Some studies have already focused on Girona as a tourist destination, but they used a different type of sample and different methodological steps. This study is new among destination studies in the sense that it is based only on textual online data and it follows a methodology based on text-miming. Text-mining is a kind of methodology that allows people extract relevant information from texts. Also, after this information is extracted by this methodology, some statistical multivariate analyses are done with the aim of discovering more about Girona’s tourism image

Relevância:

20.00% 20.00%

Publicador:

Resumo:

It is common practice in genome-wide association studies (GWAS) to focus on the relationship between disease risk and genetic variants one marker at a time. When relevant genes are identified it is often possible to implicate biological intermediates and pathways likely to be involved in disease aetiology. However, single genetic variants typically explain small amounts of disease risk. Our idea is to construct allelic scores that explain greater proportions of the variance in biological intermediates, and subsequently use these scores to data mine GWAS. To investigate the approach's properties, we indexed three biological intermediates where the results of large GWAS meta-analyses were available: body mass index, C-reactive protein and low density lipoprotein levels. We generated allelic scores in the Avon Longitudinal Study of Parents and Children, and in publicly available data from the first Wellcome Trust Case Control Consortium. We compared the explanatory ability of allelic scores in terms of their capacity to proxy for the intermediate of interest, and the extent to which they associated with disease. We found that allelic scores derived from known variants and allelic scores derived from hundreds of thousands of genetic markers explained significant portions of the variance in biological intermediates of interest, and many of these scores showed expected correlations with disease. Genome-wide allelic scores however tended to lack specificity suggesting that they should be used with caution and perhaps only to proxy biological intermediates for which there are no known individual variants. Power calculations confirm the feasibility of extending our strategy to the analysis of tens of thousands of molecular phenotypes in large genome-wide meta-analyses. We conclude that our method represents a simple way in which potentially tens of thousands of molecular phenotypes could be screened for causal relationships with disease without having to expensively measure these variables in individual disease collections.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The paper presents some contemporary approaches to spatial environmental data analysis. The main topics are concentrated on the decision-oriented problems of environmental spatial data mining and modeling: valorization and representativity of data with the help of exploratory data analysis, spatial predictions, probabilistic and risk mapping, development and application of conditional stochastic simulation models. The innovative part of the paper presents integrated/hybrid model-machine learning (ML) residuals sequential simulations-MLRSS. The models are based on multilayer perceptron and support vector regression ML algorithms used for modeling long-range spatial trends and sequential simulations of the residuals. NIL algorithms deliver non-linear solution for the spatial non-stationary problems, which are difficult for geostatistical approach. Geostatistical tools (variography) are used to characterize performance of ML algorithms, by analyzing quality and quantity of the spatially structured information extracted from data with ML algorithms. Sequential simulations provide efficient assessment of uncertainty and spatial variability. Case study from the Chernobyl fallouts illustrates the performance of the proposed model. It is shown that probability mapping, provided by the combination of ML data driven and geostatistical model based approaches, can be efficiently used in decision-making process. (C) 2003 Elsevier Ltd. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Trabajo de investigación que realiza un estudio clasificatorio de las asignaturas matriculadas en la carrera de Administración y Dirección de Empresas de la UOC en relación a su resultado. Se proponen diferentes métodos y modelos de comprensión del entorno en el que se realiza el estudio.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Latinalaisen Amerikan osuus maailmantaloudesta on pieni verrattuna sen maantieteelliseen kokoon, väkilukuun ja luonnonvaroihin. Aluetta pidetään kuitenkin yhtenä tulevaisuuden merkittävistä kasvumarkkinoista. Useissa Latinalaisen Amerikan maissa on teollisuutta, joka hyödyntää luonnonvaroja ja tuottaa raaka-aineita sekä kotimaan että ulkomaiden markkinoille. Tällaisia tyypillisiä teollisuudenaloja Latinalaisessa Amerikassa ovat kaivos- ja metsäteollisuus sekä öljyn ja maakaasun tuotanto. Näiden teollisuudenalojen tuotantolaitteiden ja koneiden valmistusta ei Latinalaisessa Amerikassa juurikaan ole. Ne tuodaan yleensä Pohjois-Amerikasta ja Euroopasta. Tässä diplomityössä tutkitaan sähkömoottorien ja taajuusmuuttajien markkinapotentiaalia Latinalaisessa Amerikassa. Tutkimuksessa perehdytään Latinalaisen Amerikan maiden kansantalouksien tilaan sekä arvioidaan sähkömoottorien ja taajuusmuuttajien markkinoiden kokoa tullitilastojen avulla. Chilen kaivosteollisuudessa arvioidaan olevan erityistä potentiaalia. Diplomityössä selvitetään ostoprosessin kulkua Chilen kaivosteollisuudessa ja eri asiakastyyppien roolia siinä sekä tärkeimpiä päätöskriteerejä toimittaja- ja teknologiavalinnoissa.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Target identification for tractography studies requires solid anatomical knowledge validated by an extensive literature review across species for each seed structure to be studied. Manual literature review to identify targets for a given seed region is tedious and potentially subjective. Therefore, complementary approaches would be useful. We propose to use text-mining models to automatically suggest potential targets from the neuroscientific literature, full-text articles and abstracts, so that they can be used for anatomical connection studies and more specifically for tractography. We applied text-mining models to three structures: two well-studied structures, since validated deep brain stimulation targets, the internal globus pallidus and the subthalamic nucleus and, the nucleus accumbens, an exploratory target for treating psychiatric disorders. We performed a systematic review of the literature to document the projections of the three selected structures and compared it with the targets proposed by text-mining models, both in rat and primate (including human). We ran probabilistic tractography on the nucleus accumbens and compared the output with the results of the text-mining models and literature review. Overall, text-mining the literature could find three times as many targets as two man-weeks of curation could. The overall efficiency of the text-mining against literature review in our study was 98% recall (at 36% precision), meaning that over all the targets for the three selected seeds, only one target has been missed by text-mining. We demonstrate that connectivity for a structure of interest can be extracted from a very large amount of publications and abstracts. We believe this tool will be useful in helping the neuroscience community to facilitate connectivity studies of particular brain regions. The text mining tools used for the study are part of the HBP Neuroinformatics Platform, publicly available at http://connectivity-brainer.rhcloud.com/.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Después de un período de crecimiento urbanístico desorbitado es oportuno hacer un primer balance de las consecuencias que este hecho ha tenido sobre la estructura espacial de las principales urbes españolas. Un elemento básico de análisis es las variaciones que se han operado sobre la densidad de población. En el presente artículo se estudian estas transformaciones mediante modelos econométricos de densidad urbana. Las metrópolis investigadas son Madrid, Barcelona, Valencia, Sevilla, Bilbao y Zaragoza y el periodo temporal abarca desde 2001 a 2007. Los resultados indican, para las metrópolis más pobladas, cambios significativos en los parámetros, y en dos casos en la propia forma funcional de la densidad.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Recent advances in machine learning methods enable increasingly the automatic construction of various types of computer assisted methods that have been difficult or laborious to program by human experts. The tasks for which this kind of tools are needed arise in many areas, here especially in the fields of bioinformatics and natural language processing. The machine learning methods may not work satisfactorily if they are not appropriately tailored to the task in question. However, their learning performance can often be improved by taking advantage of deeper insight of the application domain or the learning problem at hand. This thesis considers developing kernel-based learning algorithms incorporating this kind of prior knowledge of the task in question in an advantageous way. Moreover, computationally efficient algorithms for training the learning machines for specific tasks are presented. In the context of kernel-based learning methods, the incorporation of prior knowledge is often done by designing appropriate kernel functions. Another well-known way is to develop cost functions that fit to the task under consideration. For disambiguation tasks in natural language, we develop kernel functions that take account of the positional information and the mutual similarities of words. It is shown that the use of this information significantly improves the disambiguation performance of the learning machine. Further, we design a new cost function that is better suitable for the task of information retrieval and for more general ranking problems than the cost functions designed for regression and classification. We also consider other applications of the kernel-based learning algorithms such as text categorization, and pattern recognition in differential display. We develop computationally efficient algorithms for training the considered learning machines with the proposed kernel functions. We also design a fast cross-validation algorithm for regularized least-squares type of learning algorithm. Further, an efficient version of the regularized least-squares algorithm that can be used together with the new cost function for preference learning and ranking tasks is proposed. In summary, we demonstrate that the incorporation of prior knowledge is possible and beneficial, and novel advanced kernels and cost functions can be used in algorithms efficiently.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This study examines the short time price effect of dividend announcements during a boom and a recession. The data being used here is gathered from the years of 2000 - 2002 when it was a recession after the techno bubble burst and from the years 2005 - 2007 when investors experienced large capital gains all around the world. The data consists of dividend increases and intact observations. The aim is to find out differences in abnormal returns between a boom and a recession. Second, the study examines differences between different dividend yield brackets. Third, Finnish extra dividends, mainly being delivered to shareholders in 2004 are included to the empirical test. Generally stated, the aim is to find out do investors respect dividends more during a recession than a boom and can this be proved by using dividend yield brackets. The empirical results from U.S shows that the abnormal returns of dividend increase announcements during the recession in the beginning of this decade were larger than during the boom. Thus, investors seem to respect dividend increases more when stock prices are falling. Substantial abnormal returns of dividend increases during the time period of 2005 - 2007 could not be found. The results from the overall samples state that the abnormal returns during the recession were positively slightly higher than during the boom. No clear and strong evidence was found between different dividend yield brackets. In Finland, there were substantial abnormal returns on the announcement day of the extra dividends. Thus, indicating that investors saw the extra dividends as a good thing for shareholders' value. This paper is mostly in line with the theory that investors respect dividends more during bad times than good times.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The aim of the study is to obtain a mathematical description for an alternative variant of controlling a hydraulic circuit with an electrical drive. The electrical and hydraulic systems are described by basic mathematical equations. The flexibilities of the load and boom is modeled with assumed mode method. The model is achieved and proven with simulations. The controller is constructed and proven to decrease oscillations and improve the dynamic response of the system.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Tutkimuksen tavoitteena on tutkia epänormaalien tuottojen esiintymistä nousu- ja laskusuhdanteen aikana osingonilmoituspäivän ympärillä. Osinkoilmoitukset ovat kerätty Yhdysvaltojen markkinalta (NYSE) ajanjaksoilta 2000 - 2002, jolloin pörssit laskivat teknokuplan jälkeen ja 2005 - 2007, jolloin sijoittajat kokivat suuria kurssivoittoja. Osinkoilmoitushavainnot koostuvat yhtiöistä, jotka nostivat tai pitivät osinko per osake paikallaan. Tavoitteena on tutkia eroja epänormaaleissa tuotoissa näiden kahden ajanjakson välillä. Toiseksi, tavoitteena on tutkia miten epänormaalit tuotot poikkeavat toisistaan eri osinkotuottoluokissa. Kolmanneksi, tavoitteena on tutkia esiintyikö markkinoilla epänormaaleja tuottoja kun suomalaiset yritykset ilmoittivat ylimääräisistä osingoista, pääasiassa vuonna 2004. Yksinkertaisesti ja lyhyesti sanottuna tavoitteena on tutkia arvostavatko sijoittajat osinkoja enemmän laskukauden vai nousukauden aikana. Rahoitusteorian mukaan sijoittajien tulisi arvostaa laskukauden aikana enemmän yhtiöitä, jotka pystyvät maksamaan huonosta taloustilanteesta huolimatta hyvää osinkoa. Empiiriset testit Yhdysvalloista osoittavat, että osingon nostamisesta johtuvat epänormaalit tuotot olivat suuremmat laskusuhdanteen aikana kuin noususuhdanteen aikana. Tämä on linjassa teorian kanssa. Osingon-nostot aiheuttivat nousukauden aikana vähäisiä epänormaaleja tuottoja. Selviä eroja eri osingontuottoluokkien välillä ei pystytty havaitsemaan. Tulokset yhdistetystä aineistosta osoittavat, että sijoittajat kokivat vähäisiä positiivisia epänormaaleja tuottoja laskukauden aikana. Nousukautena tuotot olivat lähellä nollaa. Suomen markkinoilla havaittiin selvä epänormaalituotto osingonilmoituspäivänä. Tulokset ovat pääpiirteittäin linjassa teorian kanssa. Sijoittajat arvostavat osinkoja hieman enemmän lasku- kuin noususuhdanteen aikana.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Biomedical research is currently facing a new type of challenge: an excess of information, both in terms of raw data from experiments and in the number of scientific publications describing their results. Mirroring the focus on data mining techniques to address the issues of structured data, there has recently been great interest in the development and application of text mining techniques to make more effective use of the knowledge contained in biomedical scientific publications, accessible only in the form of natural human language. This thesis describes research done in the broader scope of projects aiming to develop methods, tools and techniques for text mining tasks in general and for the biomedical domain in particular. The work described here involves more specifically the goal of extracting information from statements concerning relations of biomedical entities, such as protein-protein interactions. The approach taken is one using full parsing—syntactic analysis of the entire structure of sentences—and machine learning, aiming to develop reliable methods that can further be generalized to apply also to other domains. The five papers at the core of this thesis describe research on a number of distinct but related topics in text mining. In the first of these studies, we assessed the applicability of two popular general English parsers to biomedical text mining and, finding their performance limited, identified several specific challenges to accurate parsing of domain text. In a follow-up study focusing on parsing issues related to specialized domain terminology, we evaluated three lexical adaptation methods. We found that the accurate resolution of unknown words can considerably improve parsing performance and introduced a domain-adapted parser that reduced the error rate of theoriginal by 10% while also roughly halving parsing time. To establish the relative merits of parsers that differ in the applied formalisms and the representation given to their syntactic analyses, we have also developed evaluation methodology, considering different approaches to establishing comparable dependency-based evaluation results. We introduced a methodology for creating highly accurate conversions between different parse representations, demonstrating the feasibility of unification of idiverse syntactic schemes under a shared, application-oriented representation. In addition to allowing formalism-neutral evaluation, we argue that such unification can also increase the value of parsers for domain text mining. As a further step in this direction, we analysed the characteristics of publicly available biomedical corpora annotated for protein-protein interactions and created tools for converting them into a shared form, thus contributing also to the unification of text mining resources. The introduced unified corpora allowed us to perform a task-oriented comparative evaluation of biomedical text mining corpora. This evaluation established clear limits on the comparability of results for text mining methods evaluated on different resources, prompting further efforts toward standardization. To support this and other research, we have also designed and annotated BioInfer, the first domain corpus of its size combining annotation of syntax and biomedical entities with a detailed annotation of their relationships. The corpus represents a major design and development effort of the research group, with manual annotation that identifies over 6000 entities, 2500 relationships and 28,000 syntactic dependencies in 1100 sentences. In addition to combining these key annotations for a single set of sentences, BioInfer was also the first domain resource to introduce a representation of entity relations that is supported by ontologies and able to capture complex, structured relationships. Part I of this thesis presents a summary of this research in the broader context of a text mining system, and Part II contains reprints of the five included publications.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Objective To construct a Portuguese language index of information on the practice of diagnostic radiology in order to improve the standardization of the medical language and terminology. Materials and Methods A total of 61,461 definitive reports were collected from the database of the Radiology Information System at Hospital das Clínicas – Faculdade de Medicina de Ribeirão Preto (RIS/HCFMRP) as follows: 30,000 chest x-ray reports; 27,000 mammography reports; and 4,461 thyroid ultrasonography reports. The text mining technique was applied for the selection of terms, and the ANSI/NISO Z39.19-2005 standard was utilized to construct the index based on a thesaurus structure. The system was created in *html. Results The text mining resulted in a set of 358,236 (n = 100%) words. Out of this total, 76,347 (n = 21%) terms were selected to form the index. Such terms refer to anatomical pathology description, imaging techniques, equipment, type of study and some other composite terms. The index system was developed with 78,538 *html web pages. Conclusion The utilization of text mining on a radiological reports database has allowed the construction of a lexical system in Portuguese language consistent with the clinical practice in Radiology.